

How to Use the TI 83/84 for Stats

Mary Stangler Center for Academic Success

A Few Notes

- The pictures go left to right (not all steps have pictures)
- Your calculator's screen might look a little different than the pictures

Stats Important keys

Options in *italics* means you need to press the 2nd key first

EE

Plotting Points Important keys

Making Graphs

You can make scatter plots, box plots, and histograms following these steps

- 1. Press STAT
- 2. Press Enter
- Type in x values in L1 and y values in L2.
 Press Enter after each value. Use the left and right arrow keys to move between the lists.
- 4. Press 2nd y= (STATPLOT)
- 5. Press Enter
- 6. Make sure the cursor (flashing) is over the on, then press enter.
- 7. Press the down arrow
- 8. Move the cursor so it is on the kind of graph you want and press enter
- 9. Press Graph

Note: Use 2nd Mode (QUIT) to Exit out of the Lists

Adjusting the Window for Stats

If you cannot see the graph, you might need to adjust the window.

- 1. Press ZOOM
- Scroll down to ZoomStat (number
 9) and press enter
 Your graph should now appear

SOLON MEMORY	
]3†Zoom_Out	
4:ZUecimai 5:ZCauspo	
6:254uare 6:25t.andard	
7:ZTri9	
8:ZInte9er	
ZoomStat	

Important Numbers: One Variable

We can find the minimum, maximum, median, quartiles, standard deviation, and mean all in the same place.

- 1. Press STAT
- 2. Press Enter
- 3. Enter the data into L1. Press enter after each number
- 4. Press STAT
- 5. Go over (with the arrow) to Calc
- 6. Press enter (or hit number 1) for 1var stats
- 7. Press Enter again
- 8. The important numbers appear. To see more, scroll down with the down arrow.
- For details on what everything means in 1-var stats, see next page.

x variable)

Important Numbers: Two Variables

- 1. Press STAT
- 2. Press Enter
- Type in x values in L1 and y values in L2. Press Enter after each value. Use the left and right arrow keys to move between the lists.
- 4. Press Stat
- 5. Go over to Calc
- 6. Scroll down to number 2 and press enter (or press 2)
- 7. Type 2nd 1 (L1), then comma, 2nd 2 (L2)
- 8. Press enter

Some important numbers are then shown The x indicates the information is for the x variable and the y indicates the information is for the y variable

Before You Can Find Correlation

In order to do correlation, there is a few steps that must be competed prior to finding the correlation. Luckily, you only need to do these steps once (unless you reset your calculator).

- Press 2nd then 0. This opens the catalog.
- 2. Press the x⁻¹ button (this will jump down to D)
- 3. Scroll down to DiagnosticON
- 4. Press Enter
- Press Enter again (afterwards it should say done)
- 6. Press clear

Line of Best Fit and Correlation

Find the line of best fit (aka the least squares regression line) and the correlation are found together.

- 1. Enter the points into the list
- 2. Press STAT.
- 3. Press the right arrow key to Calc.
- 4. Select LinReg (#4) and press enter
- 5. Press Enter again

Instead of using #4, you can use #8 (the difference is in the labels)

If you do not see r and r², then repeat the previous slide.

Plotting the Points and Graphing the Line of Best Fit

- Press STAT. 1.
- Press the right arrow key to Calc. 2.
- 3. Select LinReg (#4) and press enter
- Type 2^{nd} 1 (L1), then comma, 2^{nd} 2 4. (L2), then comma
- 5. The Press VARS Using the right arrow, move over to Y-vars, then press enter
- 1. Press enter again
- Press enter again 2.
- 3. Then press graph.

Before you make more graphs you need to clear the line by pressing y =, then clearing the equation of the line

Parametric…

Polar…

Clearing a List

- 1. Press STAT
- 2. Press ENTER
- 3. Use the up arrow until the list name is dark
- 4. Press Clear (never delete)
- 5. Press Enter

The list is now clear!

L1	R	L3 2
12	EN.	
Ś	5	
$L2 = \{2\}$,4,5)	

If you press delete, you must reset your calculator

Random Numbers

Using random numbers is helpful when doing sampling

- 1. Press Math
- 2. Go over to PRB
- 3. Scroll down to RandInt(and press enter
- 4. Type the smallest possible number
- 5. Type in a comma
- 6. Type in the largest number
- 7. Close parenthesis (not needed but it wont hurt to add it)
- 8. Press enter, the first random number appears
 - Keep pressing enter to get more random numbers.

Normal Distribution

To find the probability of x being greater or less than something, given a normal distribution

 Press 2nd then VARS
 Select normalcdf(and press enter Continues on next slide

Internet DRALL
THE PARTY OF A
ll:normaledf(
Service and the story
Ze normalcet(
<u>135 i puNormí</u>
là tuxtà du uz
14:1nv1(
S • F HAR?
JUN UPUT V
16:tcdf(
191032482
I/4X4Pdf(

Normal Distribution continued

P(x <number)< th=""><th>P(x>number)</th><th>P(number<x<number)< th=""></x<number)<></th></number)<>	P(x>number)	P(number <x<number)< th=""></x<number)<>
3. Type in 1 E -99	3. Type in the number	3. Type in the first number
(E is done by pressing 2 nd then	4. Type in a comma	4. Type in a comma
the comma and it means	5.Type the 1 E 99	5.Type the second number
times 10 the)	(E is done by pressing 2 nd then	6. Type in a comma
4. Type in a comma	the comma and it means	7. Type in the mean
5.Type the number	times 10 the)	8. Type in a comma
6. Type in a comma	6. Type in a comma	9. Type in the standard
7. Type in the mean	7. Type in the mean	deviation
8. Type in a comma	8. Type in a comma	10. Enter a parenthesis
9. Type in the standard	9. Type in the standard	11. Press Enter
deviation	deviation	
10. Enter a parenthesis	10. Enter a parenthesis	
11. Press Enter	11. Press Enter	

normalcdf(1e-99, 35,36,5) .4207403122	

normalcdf(35,1E9 9,36,5) 15792596878

normalcdf(25,40, 36,5)

.7742412674

Finding the Z statistic given a probability

- 1. Press 2nd Vars
- 2. Scroll down to invNorm(and press enter
- 3. Type in the probabilty
- 4. Press enter

This is the critical z value

DENS DRAW 1:normaledf(2:normalcdf(9: invNorm(4:invT(5:tedf(6:tcdf(74X ² edf(in∨Norm(∎
invNorm(.96	invNorm(.96 1.750686071

Binomial Distribution: P(x=number)

Binompdf(is used when we want P(x=number) given a binomial distribution with number of trials n and probability p

- 1. 2nd Vars
- 2. Scroll down to Letter A: binompdf and press enter
- 3. Type in n
- 4. Type in comma
- 5. Type in p
- 6. Type comma
- 7. Type in the number
- 8. Type in a close parenthesis
- 9. Enter

binomedf(5,.5,1) .15625

Binomial Distribution: P(x>number) and P(x≥ number)

Binomcdf(is used when we want P(x>number), P(x<number), $P(x \ge number)$, or $P(x \div number)$ given a binomial distribution with number of trials n and probability p

	P(x>number)		P(x≥ number)
1.	Type in 1-	1.	Type in 1-
2.	Press 2 nd then Vars	2.	Press 2 nd then Vars
3.	Scroll down to Letter B: binomcdf and	3.	Scroll down to Letter B: binomicdf and press
	press enter		enter
4.	Type in n	4.	Type in n
5.	Type in a comma	5.	Type in a comma
6.	Type in p	6.	Type in p
7.	Type in a comma	7.	Type in a comma
8.	Type in the number	8.	Type in the number-1
9.	Type in a close parenthesis	9.	Type in a close parenthesis
10	. Enter	10	. Enter
	1_binomcdf(15,.2	-	1-binomcdf(15,.2
	.3518378953		.6019767884

Binomial Distribution: P(x<number) and P(x÷number)

Binomcdf(is used when we want P(x>number), P(x<number), $P(x \ge number)$, or $P(x \div number)$ given a binomial distribution with number of trials n and probability p

	P(x <number)< th=""><th></th><th>P(x÷number)</th></number)<>		P(x÷number)
1.	Press 2 nd then Vars	1.	Press 2 nd then Vars
2.	Scroll down to Letter B: binomcdf and	2.	Scroll down to Letter B: binomcdf and
	press enter		press enter
3.	Type in n	3.	Type in n
4.	Type in a comma	4.	Type in a comma
5.	Type in p	5.	Type in p
6.	Type in a comma	6.	Type in a comma
7.	Type in the number-1	7.	Type in the number
8.	Type in a close parenthesis	8.	Type in a close parenthesis
9.	Enter	9.	Enter

binomcdf(15,.2,3 6481621047

T-distribution: Finding the Probability

 Press 2nd Vars
 Scroll down to tcdf(and press enter *Continues on next slide*

T-distribution continued

H _a : Ã <number< th=""><th>H_a: Ã>number</th><th>H_a: Ã ø number</th></number<>	H _a : Ã>number	H _a : Ã ø number
3. Type in 1 E -99	3. Type in the t statistic	3. Type in the t statistic
4. Type in a comma	4. Type in a comma	4. Type in a comma
5. Type the t statistic	5. Type the 1 E 99	5.Type the 1 E 99
6. Type in a comma	6. Type in a comma	6. Type in a comma
7. Type in the degrees of	7. Type in the degrees of	7. Type in the degrees of
freedom	freedom	freedom
8. Enter a parenthesis	8. Enter a parenthesis	8. Enter a parenthesis
9. Press Enter	9. Press Enter	9. Press Enter
		10. Times by 2

tcdf(3.2,1E99,76) .0010029479

2,1£99,76 tcdf 0010029479 Ans*2 .0020058959

Confidence Intervals Option 1: Data

Use this option when you have a list of data

- 1. Enter your data into L1 (and L2 if needed)
- 2. Press Stat
- 3. Go over to tests
- Scroll down and select the type of interval you want (they start at 7)

For this example we will use Tinterval

- 4. Go over to data and hit enter (if data is already selected skip this step)
- 5. Scroll down
- 6. Where it says List: it should say L1 (like the picture). If your data is not in L1, switch it now
- 7. Scroll down and Leave Freq:1 alone
- 8. Scroll down and For C-level: type in your confidence interval (as a decimal)
- 9. Scroll down to calculate and press enter to get your confidence interval

EDIT CALC Mashe 2:T-Test 3:2-SampZTest 4:2-SampTTest 5:1-PropZTest 6:2-PropZTest 7.JZInterval
EDIT CALC Mashe 3†2-SampZTest 4:2-SampTTest 5:1-PropZTest 6:2-PropZTest 7:ZInterval 942-SampZInt
Inpt: Dence Stats List:L1 Freq:1 C-Level:.95 Calculate

Confidence Intervals Option 2: Stats

Use this option when you have the mean, standard deviation, etc.

- 1. Press Stat
- 2. Go over to tests
- 3. Scroll down and select the type of interval you want (they start at 7)

For this example we will use Tinterval

- 4. Go over to stats and hit enter (if stats is already selected skip this step)
- 5. Scroll down and Type in the mean
- 6. Scroll down and type in the standard deviation
- 7. Scroll down and type in the sample size
- 8. Scroll down and For C-level: type in your confidence interval (as a decimal)
- 9. Scroll down to calculate and press enter to get your confidence interval

Hypothesis Testing Option 1: Data

Use this option when you have a list of data

- 1. Enter your data into L1 (and L2 if needed)
- 2. Press Stat
- 3. Go over to tests
- 4. Scroll down until you see the test you want and hit enter For this example we will use 2-sampleTTest
- 4. Go over to data and hit enter (if data is already selected skip this step)
- 5. Scroll down and make any changes needed (for example you have your data in different lists)
- 6. Scroll down to μ 1: and select your alternative hypothesis and press enter
- 7. Scroll down and change pooled to yes or no as needed (by pressing enter)
- 8. Scroll down to calculate and press enter

The t is the test statistic, and p is the p-value you need to make your decision about your hypothesis are given.

Hypothesis Testing Option 2: Stats

Use this option when you have the mean, standard deviation, etc.

- 1. Press Stat
- 2. Go over to tests
- 3. Scroll down until you see the test you want and hit enter For this example we will use 2-sampleTTest
- 4. Go over to stats and hit enter (if stats is already selected skip this step)
- 5. Scroll down and enter in the information needed
- 6. Scroll down to μ 1: and select your alternative hypothesis and press enter
- Scroll down and change pooled to yes or no as needed (by pressing enter)
- 8. Scroll down to calculate and press enter The t is the test statistic, and p is the p-value you need to make your decision about your hypothesis are given.

Resetting the Calculator

If something is wrong with the calculator or you want to clear everything, you need to reset the calculator

- 1. Press 2nd + (MEM)
- 2. Select Reset (or press 7)
- 3. Select Defaults (or press 2)
- 4. Select Reset (or press 2)
- 5. A screen that says Defaults set will appear.

Warning: This will delete everything (numbers in lists, any functions in y=, games,...)

