PHYS 2300 and 2305: General Physics I and II Formulas

Chapter 1

Trig Formulas

$\sin \theta=\frac{\text { Opposite }}{\text { Hypotenuse }}$	$\theta=\sin ^{-1}\left(\frac{\text { Opposite }}{\text { Hypotenuse }}\right)$
$\cos \theta=\frac{\text { Adjacent }}{\text { Hypotenuse }}$	$\theta=\cos ^{-1}\left(\frac{\text { Adjacent }}{\text { Hypotenuse }}\right)$
$\tan \theta=\frac{\text { Oppostie }}{\text { Adjacent }}$	$\theta=\tan ^{-1}\left(\frac{\text { Oppostie }}{\text { Adjacent }}\right)$
$a^{2}=b^{2}+c^{2}$	

Vectors

	$\vec{A}+\vec{B}=\vec{C}$
Where	
Vector Addition by	$\overrightarrow{C_{x}}=\overrightarrow{A_{x}}+\overrightarrow{B_{x}}$
Components	$\overrightarrow{C_{y}}=\overrightarrow{A_{y}}+\overrightarrow{B_{y}}$
Then to find \vec{C} use	
$c^{2}=a^{2}+b^{2}$	

Chapter 2

Velocity

Average Velocity	$\bar{v}=\frac{\text { displacement }}{\text { time }}=\frac{\Delta \bar{x}}{\Delta t}$ or $\bar{v}=\frac{\Delta \bar{d}}{\Delta t}$	2.2
Average Speed	average speed $=\frac{\text { distance }}{\text { time }}$	2.1
Instantaneous Velocity	$v=\lim _{\Delta t \rightarrow 0} \frac{\Delta \bar{x}}{\Delta t}$	2.3

Acceleration

Average Acceleration	$\bar{a}=\frac{\Delta v}{\Delta t}$	2.4
Instantaneous Acceleration	$a=\lim _{\Delta t \rightarrow 0} \frac{\Delta \bar{v}}{\Delta t}$	2.5

Motion of a particle with constant acceleration

$v=v_{0}+a t$	2.4
$x=\frac{1}{2}\left(v_{0}+v\right) t$ or $d=\frac{1}{2}\left(v_{0}+v\right) t$	2.7
$x=v_{0} t+\frac{1}{2} a t^{2} \operatorname{Or} d=v_{0} t+\frac{1}{2} a t^{2}$	2.8
$v^{2}=v_{0}^{2}+2 a x$ or $v^{2}=v_{0}^{2}+2 a d$	2.9

Chapter 3

Average Velocity/Acceleration

Average Velocity	$\bar{v}=\frac{\Delta \bar{x}}{\Delta t}$ or $\bar{v}=\frac{\Delta \bar{d}}{\Delta t}$	2.2
Average Acceleration	$\bar{a}=\frac{\Delta v}{\Delta t}$	2.4

Projectile Motion		
X direction	Y direction	
$v_{x}=v_{0 x}+a_{x} t$	$v_{y}=v_{0 y}+a_{y} t$ or $v_{y}=v_{0 y}+g t$	3.3
$x=\frac{1}{2}\left(v_{0 x}+v_{x}\right) t$	$y=\frac{1}{2}\left(v_{0 y}+v_{y}\right) t$ or $d=\frac{1}{2}\left(v_{0 x}+v_{x}\right) t$	3.4
$x=v_{0 x} t+\frac{1}{2} a_{x} t^{2}$	$y=\frac{1}{2}\left(v_{0 y}+v_{y}\right) t$	
or $d=v_{0 x} t+\frac{1}{2} a_{x} t^{2}$	$y=1$ or $h=v_{0 y} t+\frac{1}{2} g t^{2}$	3.5
$v_{x}^{2}=v_{o x}^{2}+2 a_{x} x$	$v_{y}^{2}=v_{o y}^{2}+2 a_{y} y$ or $v_{x}^{2}=v_{o x}^{2}+2 a_{x} d$	3.6

Relative Motion | $\overrightarrow{v_{A C}}=\overrightarrow{v_{A B}}+\overrightarrow{v_{B C}}$ |
| :---: |
| $\overrightarrow{v_{A B}}=-\overrightarrow{v_{B A}}$ |

Chapter 4

Newton's Second Law

General	$\Sigma \vec{F}=m \vec{a}$	4.1
Component form	$\Sigma F_{x}=m a_{x}$	4.2

Gravitational Force

Gravitational Force	$F=G \frac{m_{1} m_{2}}{r^{2}}$	4.3
Weight	$\mathrm{W}=\mathrm{mg}$ Where $g=G \frac{m_{1}}{r^{2}}$	

G=Universal Gravitational Constant $=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$
Friction

Static Friction (maximum)	$f_{s}{ }^{\max }=\mu_{s} F_{N}$	4.7
Kinetic Frictional	$f_{k}=\mu_{k} F_{N}$	4.8

Chapter 5

Speed	$v=\frac{2 \pi r}{T}$	5.1
Centripetal Acceleration	$a_{c}=\frac{v^{2}}{r}$	5.2
Centripetal Force	$F_{c}=\frac{m v^{2}}{r}$	5.3
Banked Curve	$\tan \theta=\frac{v^{2}}{r g}$	5.4
Satellites in circular	$v=\sqrt{\frac{G M_{E}}{r}}$	5.5
orbits	$T=\frac{2 \pi r^{3 / 2}}{\sqrt{G M_{E}}}$	5.6

NOTE:
M_{E} mass of earth $=5.98 \times 10^{24} \mathrm{~kg}$
r_{E} radius of earth $6.38 \times 10^{6} \mathrm{~m}$
$\mathrm{G}=6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}$

Work done by constant Force	$\begin{aligned} & \hline W=(F \cos \theta) s \\ & o r \\ & W=(F \cos \theta) d \\ & \hline \end{aligned}$	6.1
Kinetic Energy	$K E=\frac{1}{2} m v^{2}$	6.2
Work-Energy Theorem	$\begin{aligned} W= & K E_{f}-K E_{0} \\ & =\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{0}^{2} \\ & =\frac{1}{2} m\left(v_{f}^{2}-v_{0}^{2}\right) \end{aligned}$	6.3
Work done by gravity	$W_{\text {gravity }}=m g\left(h_{0}-h_{f}\right)$	6.4
Gravitational Potential Energy	$P E=m g h$	6.5
Alternative Work-Energy Theorem	$\begin{gathered} W_{n c}=E_{f}-E_{0} \\ =\left(K E_{f}+P E_{f}\right)-\left(K E_{0}+P E_{0}\right) \end{gathered}$	6.8
When $W_{n c}=0$	$\begin{gathered} E_{f}=E_{0} \text { or } \\ \left(K E_{f}+P E_{f}\right)=\left(K E_{0}+P E_{0}\right) \end{gathered}$	
Power	$P=\frac{W}{t}=\frac{\Delta E}{t}=F v$	$\begin{aligned} & 6.10 \\ & 6.11 \end{aligned}$
Work done by a variable Force	Area under the curve of a $F \cos \theta$ vs. s graph	

- Conservative Forces: force of gravity, spring force
- Non-conservative forces: friction, air resistance

Chapter 7

Impulse and Momentum		
Impulse	$J=\bar{F} \Delta t$	7.1
Linear Momentum, p	$p=m v$	7.2
$\begin{array}{l}\text { Impulse-Momentum } \\ \text { Theorem }\end{array}$	$\left(\sum \bar{F}\right) \Delta t=m v_{f}-m v_{0}=m \Delta v$	
Or $\mathrm{J}=\Delta \mathrm{p}$		

Collision

Final Velocity of 2 objects in a head-on collision where one object is initially at rest 1: moving object 2: object at rest	$v_{f 1}=\left(\frac{m_{1}-m_{2}}{m_{1}+m_{2}}\right) v_{01}$	
Conservation of Linear Momentum (in 1D)	$v_{f 2}=\left(\frac{2 m_{1}}{m_{1}+m_{2}}\right) v_{01}$	7.8
Elastic Collision	$\vec{P}_{0}=\vec{P}_{f}=\vec{P}_{f}-\vec{P}_{0}=0$	7.7
Inelastic Collision	$m_{1} v_{01}+m_{2} v_{02}=m_{1} v_{f 1}+m_{2} v_{f 2}$	7.7 b
Conservation of Linear Momentum (in 2D)	$m_{1} v_{01}+m_{2} v_{02}=\left(m_{1}+m_{2}\right) v_{f}$ $m_{1} v_{01 x}+m_{2} v_{02 x}=m_{1} v_{f 1 x}+m_{2} v_{f 2 x}$ $m_{1} v_{02 y}=m_{1} v_{f 1 y}+m_{2} v_{f 2 y}$	7.9

Center of Mass

Center of mass location	$x_{c m}=\frac{m_{1} x_{1}+m_{2} x_{2}}{m_{1}+m_{2}}$	7.10
Center of mass velocity	$v_{c m}=\frac{m_{1} v_{1}+m_{2} v_{2}}{m_{1}+m_{2}}$	7.11

Chapter 8

Angular displacement	$\Delta \theta=\theta-\theta_{0}$ $\theta=\frac{s}{r}$	8.1
Average angular velocity	$\bar{\omega}=\frac{\Delta \theta}{\Delta t}$	8.2
Average angular acceleration	$\bar{\alpha}=\frac{\Delta \omega}{\Delta t}$	8.4

Motion of a particle with constant acceleration

$\omega=\omega_{0}+\alpha t$	8.4
$\theta=\frac{1}{2}\left(\omega+\omega_{0}\right) t$	8.6
$\theta=\omega_{0} t+\frac{1}{2} \alpha t^{2}$	8.7
$\omega^{2}=\omega_{0}^{2}+2 \alpha \theta$	8.8

Relationship between		
angular variables and	$v_{T}=r \omega$	
tangential variables (t		
subscript)	$a_{T}=r \alpha$	8.9
		8.10
When no slipping	$v=v_{T}=r \omega$ $a=a_{T}=r \alpha$	8.12
Centripetal acceleration	$a_{c}=r \omega^{2}$	8.13

Chapter 9

Torque and Inertia		9.1
When at Equilibrium τ	$\tau=F \ell$	9.2
Moment of Inertia	$I=\sum m r^{2}$	9.6
Newton's Second Law for a rigid body rotating about a Fixed axis	$\sum \tau=I \alpha$	9.7

Work, Energy

Rotational work	$W_{R}=\tau \theta$	9.8
Rotational Kinetic Energy	$K E_{R}=\frac{1}{2} I \omega^{2}$	9.9

Angular Momentum	$L=I \omega$	9.1
Center of Gravity	$x_{c g}=\frac{W_{1} x_{1}+W_{1} x_{1}+\cdots}{W_{1}+W_{2}+\cdots}$	9.2

See reverse side for moments of Inertia I for various rigid objects of Mass M

Moments of Inertia I for various rigid objects of Mass M

Thin walled hollow cylinder or hoop $I=M R^{2}$	Solid cylinder or disk
Thin rod, axis perpendicular to rod and passing though center $I=\frac{1}{12} M L^{2}$	Thin rod, axis perpendicular to rod and passing though end $I=\frac{1}{3} M L^{2}$
Solid Sphere, axis through center	Solid Sphere, axis tangent to surface $I=\frac{7}{5} M R^{2}$
Thin Walled spherical shell, axis through center $I=\frac{2}{3} M R^{2}$	Thin Rectangular sheet, axis along one edge $I=\frac{1}{3} M L^{2}$
Thin Rectangu	sheet, axis parallel to sheet and passing gh center of the other edge $I=\frac{1}{12} M L^{2}$

Chapter 10

Force Applied	$F_{x}^{\text {applied }}=k x$	10.1
Hooke's Law	$F_{x}=-k x$	10.2
Frequency cycles per time	$f=\frac{1}{T}$	10.5
Angular frequency	$\omega=2 \pi f=2 \pi / T$	10.6
Maximum Velocity Simple Harmonic Motion	$v_{\max }=A \omega$	10.8
Maximum Acceleration Simple Harmonic Motion	$a_{\max }=A \omega^{2}$	10.11
Angular frequency of simple harmonic motion	$\quad P=\sqrt{k / m}$	10.11
Elastic potential energy	PE elastic $=\frac{1}{2} k x^{2}$	10.13

Simple Pendulum (10.16)

Angular Frequency	Time Period	Length
$\omega=\sqrt{\frac{g}{L}}$	$T=2 \pi \sqrt{\frac{L}{g}}$	$L=\frac{T^{2} g}{4 \pi^{2}}$

Physical pendulum (10.15)

Angular Frequency	Time Period
$\omega=\sqrt{\frac{m g L}{I}}$	$T=2 \pi \sqrt{\frac{I}{m g L}}$

Elastic deformation -stretch and compression (10.17)
Perpendicular to Area (A)
$Y=$ constant called Young's modulus

Force	Change in Length
$F=Y\left(\frac{\Delta L}{L_{0}}\right) A$	$\Delta L=\frac{F L_{0}}{Y A}$

Shear Deformation (change in shape)

Parallel to Area (A)
S = constant called the shear modulus

Force	
$F=S\left(\frac{\Delta X}{L_{0}}\right) A$	Change in Length
	$\Delta \mathrm{X}=\frac{F L_{0}}{S A}$

Pressure (related to Volume deformation)

$$
P=\frac{F}{A}
$$

change ΔP in pressure needed to change the volume
$B=$ constant known as the bulk modulus When the volume decreases, ΔV is negative

$$
\Delta P=-B\left(\frac{\Delta V}{V_{o}}\right)
$$

Chapter 11

Density	$\rho=\frac{m}{V}$	11.1
Pressure	$P=\frac{F}{A}$	11.3
Specific Gravity	$=\frac{\text { Density of substance }}{1.000 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}}$	11.2
Pressure and depth in a static Fluid P_{1} is higher than P_{2}	$P_{2}=P_{1}+\rho g h$	10.4
Gauge Pressure	$\rho g h$	
Archimedes’ principle	$F_{B}=W_{\text {fluid }}$	11.6
Mass Flow Rate	Mass flow rate $=\rho A v$	11.7
Volume flow rate	$Q=A v=\frac{V}{t}$	
Bernoulli's Equation	$P_{1}+\frac{1}{2} \rho v_{1}^{2}+\rho g y_{1}=P_{2}+\frac{1}{2} \rho v_{2}^{2}+\rho g y_{2}$	11.11
Equation of continuity	$\rho_{1} A_{1} v_{1}=\rho_{2} A_{2} v_{2}$	11.8
equation of continuity ($\rho_{1}=\rho_{2}$)	$A_{1} v_{1}=A_{2} v_{2}$	
Force to move Viscous Layer with constant velocity	$F=\frac{\eta A v}{y}$	11.13
Poiseuille's law	$Q=\frac{\pi R^{4}\left(P_{2}-P_{1}\right)}{8 \eta L}$	11.14
Force and Area if Pressure same	$F_{1} / A_{1}=F_{2} / A_{2} \text { or } F_{2}=F_{1}\left(\frac{A_{2}}{A_{1}}\right)$	

Chapter 12

Temperature Scales

Fahrenheit to Celsius	Temperature		
Celsius to Fahrenheit		$F=\frac{5}{5} C+32$	
Celsius to Kelvin		$\mathrm{K}=\mathrm{C}+273.15$ or $T=$ $T_{c}+273.15$	12.1

Thermal Expansion

Linear Thermal Expansion	$\Delta L=\alpha L_{o} \Delta T$	12.2
Volume Thermal Expansion	$\Delta V=\beta V_{0} \Delta T$	12.3

Heat and Power		
Heat and temperature change	$\Delta Q=c m \Delta T$	12.4
Heat and phase change	$Q=m L$	12.5

\% Relative Humidity	$\frac{\text { Partial } P_{\text {water vapot }}}{\text { Equilibrum } P_{\text {water vapot }} @ \text { temp }}$	12.6

Chapter 13

Heat and Power
Power $\mathrm{P}=\mathrm{Q} / \mathrm{t}$ Heat Conducted $Q=\frac{(k A \Delta T) t}{L}$ 13.1 Radiant energy e emissivity $\sigma=5.67 \times 10^{-8} \mathrm{~J} /\left(\mathrm{s}^{*} \mathrm{~m}^{2} *^{4}\right)$ $Q=e \sigma T^{4} A t$ T temp in Kelvins A surface area $P_{n e t}=e \sigma A\left(T^{4}-T_{0}^{4}\right)$ 13.3 Net radiant Power T object Temp in kelvins To environment temp in Kelvins

Table 13.1 Thermal Conductivities ${ }^{a}$ of Selected Materials
Substance Thermal Conductivity, $k\left[\mathrm{~J} /\left(\mathrm{s} \cdot \mathrm{m} \cdot \mathrm{C}^{\circ}\right)\right]$

Metals

Aluminum	240
Brass	110
Copper	390
Iron	79
Lead	35
Silver	420
Steel (stainless)	14

Gases

Air	0.0256
Hydrogen $\left(\mathrm{H}_{2}\right)$	0.180
Nitrogen $\left(\mathrm{N}_{2}\right)$	0.0258
Oxygen $\left(\mathrm{O}_{2}\right)$	0.0265

Other Materials

Asbestos	0.090
Body fat	0.20
Concrete	1.1
Diamond	2450
Glass	0.80
Goose down	0.025
Ice ($\left.0^{\circ}{ }^{\circ} \mathrm{C}\right)$	2.2
Styrofoam	0.010
Water	0.60
Wood (oak)	0.15
Wool	0.040
Except as noted, the valves pertain to temperatures near $20{ }^{\circ} \mathrm{C}$.	

Chapter 14

Molecular Mass, Moles, and Avogadro's Number

Atomic Mass Unit	$1 u=1.6605 \times 10^{-27} \mathrm{~kg}$
Avogadro's Number	$N_{A}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
Number of Moles, n N number of particles (atoms or molecules)	$n=\frac{\mathrm{N}}{N_{A}}$
Number of Moles, n m sample mass (g) mass per mole: g/mol	$m_{\text {particle }}=\frac{\mathrm{mass} \text { per mole }}{N_{A}}$
Mass of a particle	$\rho=\frac{n \cdot \text { mass per mole }}{\mathrm{man}}$
Density	

Ideal Gas Law

Ideal Gas law		
n number of moles		
R Universal gas constant $=8.31 \mathrm{~J} /(\mathrm{mol} * \mathrm{~K})$	$P V=n R T$	14.1
T temp kelvins		
Ideal Gas Law (alternative form) N number of particles k Boltzmann's constant $\left(1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}\right)$	$P V=N k T$	14.2

Boyle's and Charles' Laws

Boyle's law (when n and T are constant)	$P_{i} V_{i}=P_{f} V_{f}$	14.3
Charles' law (n and P are constant)	$\frac{V_{i}}{T_{i}}=\frac{V_{f}}{T_{f}}$	14.4

Energy

Average Kinetic Energy for a molecule	$\overline{K E}=\frac{1}{2} m v_{r m s}^{2}=\frac{3}{2} k T$	14.6
Internal Energy	$U=\frac{3}{2} n R T$	14.7

Diffusion

Fick's law of diffusion		
D Diffusion constant		
ΔC is the solute	$m=\frac{D A \Delta C t}{L}$	14.8
concentration		
difference between the		
ends of the channel		
(same as density)		

Chapter 15

First Law of Thermodynamics

First Law	$\Delta U=U_{f}-U_{0}=Q-W$	15.1
Note:		
ΔU Change in Internal Energy		
Q (heat) is positive when the system gains heat and negative when it loses		
heat. W (work) is positive when work is done by the system and negative		
when work is done on the system.		

Applications of First Law		
Process	Work Done	First Law
Isobaric (constant pressure)	$W=P\left(V_{f}-V_{i}\right)$ (Eq 15.2)	$\Delta U=Q-P\left(V_{f}-V_{i}\right)$ $\left(Q=\frac{5}{2} n R \Delta T\right)$
Isochoric (constant volume)	$\mathrm{W}=0 \mathrm{~J}$	$\Delta U=Q-0 J$ $\left(Q=\frac{3}{2} n R \Delta T\right)$
Isothermal (constant temp)	$W=n R T \ln \left(\frac{V_{f}}{V_{i}}\right)$ (Eq. 15.3)	$O J=Q-n R T \ln \left(\frac{V_{f}}{V_{i}}\right)$
Adiabatic (no heat flow)	$W=\frac{3}{2} n R\left(T_{i}-T_{f}\right)$ (15.4)	$\Delta U=0 J-\frac{3}{2} n R\left(T_{i}-T_{f}\right)$

Adiabatic expansion/compression of an ideal gas	$P_{0} V_{0}^{\gamma}=P_{f} V_{f}^{\gamma}$	15.5
Heat with known number of moles	$Q=C n \Delta T$	15.6
molar specific heat	$C_{p}=\frac{5}{2} R$	15.7
	$C_{v}=\frac{3}{2} R$	15.8

Heat Engines

The efficiency e of a heat engine	$e=\frac{\text { Work done }}{\text { Input heat }}=\frac{\|W\|}{\left\|Q_{H}\right\|}=1-\frac{\left\|Q_{c}\right\|}{\left\|Q_{H}\right\|}$	15.11 15.13
Conservation of energy requires	$\left\|Q_{H}\right\|=\|W\|+\left\|Q_{c}\right\|$	15.12

Carnot Engine

Carnot Engine		
For a Carnot engine	$\frac{\left\|Q_{C}\right\|}{\left\|Q_{H}\right\|}=\frac{\left\|T_{C}\right\|}{\left\|T_{H}\right\|}$	14.14
Efficiency e for a Carnot engine	$e_{\text {carnot }}=1-\frac{T_{C}}{T_{H}}$	15.15

Coefficient of Performance (COP)

COP of a refrigerator or an air conditioner	$C O P=\frac{\left\|Q_{c}\right\|}{\|W\|}=\frac{1}{\frac{T_{H}}{T_{C}}-1}$	
COP of a heat pump	$C O P=\frac{\left\|Q_{H}\right\|}{\|W\|}$	15.17

Entropy

change in entropy ΔS	$\Delta S=\left(\frac{Q}{T}\right)_{R}$	15.18
change in entropy $\Delta \boldsymbol{S}_{\text {universal }}$	$\begin{aligned} \Delta S_{\text {universal }} & =\Delta S_{\text {system }}+\Delta S_{\text {surroundings }} \\ & =\Delta S_{\text {cold }}+\Delta S_{\text {Hot }} \end{aligned}$	
Energy unavailable for doing work	$W_{\text {unavailable }}=T_{0} \Delta S_{\text {universe }}$	15.19

Chapter 16

Waves		
Speed of a Wavelength	$v=f \lambda=\frac{\lambda}{T}$	16.1
Speed of a wave on a string	$v=\sqrt{\frac{F}{m / L}}$	16.2
description $+x$ direction	$y=A \sin \left(2 \pi f t-\frac{2 \pi x}{\lambda}\right)$	16.3
description $-x$ direction	$y=A \sin \left(2 \pi f t+\frac{2 \pi x}{\lambda}\right)$	16.4

Speed of Sound

Speed of Sound in a Gas $\mathrm{k}=1.38 \times 10^{-23}$	$v=\sqrt{\frac{\gamma k T}{m}}$	16.5
Speed of sound in a liquid	$v=\sqrt{\frac{B_{a d}}{\rho}}$	16.6
Speed of sound in solid bar	$v=\sqrt{\frac{Y}{\rho}}$	16.7

Sound Intensity

Sound Intensity		
Intensity	$I=\frac{P}{A}$	16.8
Intensity -uniform in all directions	$I=\frac{P}{4 \pi r^{2}}$	16.9
Intensity level in decibels $10=1 \times 10-12 \mathrm{~W} / \mathrm{m} 2$	$\beta=(10 d B) \log \left(\frac{I}{I_{o}}\right)$	16.10

Doppler Effect		
Source Moving toward stationary observer	$f_{o}=f_{S}\left(\frac{1}{1-\frac{v_{S}}{v}}\right)$	16.15
Source Moving away from stationary observer	$f_{o}=f_{S}\left(\frac{1}{1+\frac{v_{S}}{v}}\right)$	16.15
Observer moving toward stationary source	$f_{o}=f_{s}\left(1+\frac{v_{o}}{v}\right)$	16.15
Observer moving away from stationary source	$f_{o}=f_{s}\left(1-\frac{v_{o}}{v}\right)$	16.15

Chapter 17

Constructive and Destructive Interference

Constructive	Difference in path lengths is zero or an integer
2 waves in Phase	$(0,1,2,3 \ldots)$
Destructive	Difference in path lengths is a half- integer
2 waves in Phase	$(0.5,1.5,2.5, \ldots)$
Constructive	Difference in path lengths is a half- integer
2 waves out of Phase	$(0.5,1.5,2.5, \ldots)$
Destructive	Difference in path lengths is zero or an integer
2 waves out of Phase	$(0,1,2,3 \ldots)$

Diffraction

Single Slit -first minimum	$\sin \theta=\frac{\lambda}{D}$	17.1
Circular Opening -first minimum	$\sin \theta=1.22 \frac{\lambda}{D}$	17.2

beats	$f_{\text {beat }}=f_{1}-f_{2}$	17.46

Standing Waves		
Transverse Natural frequency Fixed at both ends	$f_{n}=n\left(\frac{v}{2 L}\right)$ for $\mathrm{n}=1,2, \ldots$	17.3
Longitudinal Natural frequency open at both ends	$f_{n}=n\left(\frac{v}{2 L}\right)$ for $\mathrm{n}=1,2, \ldots$	17.4
Longitudinal Natural frequency open at one end	$f_{n}=n\left(\frac{v}{4 L}\right)$ for $\mathrm{n}=1,3,5, \ldots$	17.5

Chapter 18

Formulas

Number of electrons/protons	$\#=\frac{q}{e}$	
Coulombs law: F=force Where one exerts on two	$F=\frac{k\left\|q_{1}\right\|\left\|q_{2}\right\|}{r^{2}}$	18.1
Electric Field	$\vec{E}=\frac{\vec{F}}{q_{0}}$	18.2
Magnitude of Electric Field	$E=\frac{k\|q\|}{r^{2}}$	18.3
Magnitude of Electric Field for a parallel plate capacitor	$\Phi_{E}=\sum(E \cos \phi) \Delta A=\frac{q}{\epsilon_{0} A}=\frac{\sigma}{\epsilon_{0}}$	$18.6,7$
Electric Flux		18.4

Important Numbers

$k=8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}$
Permittivity of free space
$\epsilon_{0}=8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{~N} \cdot \mathrm{~m}^{2}}$
Magnitude of charge on electron (-e) or proton (+e)
$e=1.6 \times 10^{-19} \mathrm{C}$ (a lot of time q_{0})
Mass of Electron
$9.11 \times 10^{-31} \mathrm{~kg}$
Mass of Proton
$1.673 \times 10^{-27} \mathrm{~kg}$
Mass of Neutron
$1.675 \times 10^{-27} \mathrm{~kg}$

Chapter 19

Chapter 20

Work and Electric Potential Energy	$W_{A B}=E P E_{A}-E P E_{B}$	19.1
Electric Potential	$V=\frac{E P E}{q_{0}}=\frac{k q}{r}$	19.3,6
Electric Potential Difference Charge moves from A to B	$V_{A}-V_{B}=\frac{E P E_{B}}{q_{0}}-\frac{E P E_{A}}{q_{0}}=\frac{-W_{A B}}{q_{0}}$	19.4
Electric Potential Difference Charge moves from B to A	$V_{B}-V_{A}=\frac{W_{A B}}{q_{0}}$	
Total Energy	$\begin{gathered} E=\frac{1}{2} m v^{2}+\frac{1}{2} I \omega^{2}+m g h+\frac{1}{2} k x^{2} \\ +E P E \end{gathered}$	
Electric field	$E=-\frac{\Delta V}{\Delta s}$	19.7a
Charge on each plate of a capacitor	$q=C V$	
Dielectric constant (E's are electric fields without and with a dielectric)	$\kappa=\frac{E_{o}}{E}$	
Capacitance of a parallel plate capacitor	$C=\frac{\kappa \epsilon_{0} A}{d}$	
Electric Potential Energy Stored in a capacitor	Energy $=\frac{1}{2} q V=\frac{1}{2} C V^{2}=\frac{q^{2}}{2 C}$	19.11
Energy Density	Energy Density $=\frac{\text { Energy }}{\text { Volume }}=\frac{1}{2} \kappa \epsilon_{0} E^{2}$	19.12

Current (if electric current is constant)	$I=\frac{\Delta q}{\Delta t}$	20.1
Ohms Law	$V=I R$ or $R=\frac{V}{I}$ or $I=\frac{V}{R}$	20.2
Resistance with length L, cross-sectional area A	$R=\rho \frac{L}{A}$	20.3
Resistance and Resistivity (T temp)	$\begin{aligned} & \rho=\rho_{0}\left[1+\alpha\left(T-T_{0}\right)\right] \\ & R=R_{0}\left[1+\alpha\left(T-T_{0}\right)\right] \end{aligned}$	20.4,5
Electric Power	$P=I V, \quad P=I^{2} R, \quad P=\frac{V^{2}}{R}$	20.6
AC Circuits	$\begin{aligned} V & =V_{0} \sin (2 \pi f t) \\ I & =I_{0} \sin (2 \pi f t) \end{aligned}$	20.7,8
RMS Formulas with Current and Voltage	$\begin{aligned} & I_{r m s}=\frac{I_{0}}{\sqrt{2}} \\ & V_{r m s}=\frac{V_{0}}{\sqrt{2}} \end{aligned}$	$\begin{aligned} & 20.12 \\ & 20.13 \end{aligned}$
Average Power	$\begin{gathered} \bar{P}=I_{r m s} V_{r m s} \\ \bar{P}=I_{r m s}^{2} R \\ \bar{P}=\frac{V_{r m s}^{2}}{R} \end{gathered}$	20.15
Series (I is the same)	$\begin{aligned} & R_{S}=R_{1}+R_{2}+R_{3}+\cdots \\ & \frac{1}{C_{S}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}+\cdots \end{aligned}$	$\begin{aligned} & 20.16 \\ & 20.19 \end{aligned}$
Parallel (V is the same)	$\begin{aligned} & \frac{1}{R_{s}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\cdots \\ & C_{p}=C_{1}+C_{2}+C_{3}+\cdots \end{aligned}$	$\begin{aligned} & 20.17 \\ & 20.18 \end{aligned}$
RC circuits	$\begin{gathered} q=q_{0}\left[1-e^{\left.\frac{-t}{R C}\right]}\right. \text { (charging) } \\ \tau=R C \\ q=q_{0} e^{\frac{-t}{R C}} \text { (discharging) } \end{gathered}$	$\begin{aligned} & 20.20 \\ & 20.21 \\ & 20.22 \end{aligned}$

Chapter 22

Magnitude of magnetic Field $\mu_{0}=4 \pi \times 10^{-7} T \cdot m / A$	$\begin{gathered} B=\frac{F}{\left\|q_{0}\right\| v \sin \theta} \\ B=\frac{\mu_{0} I}{2 \pi r} \\ B=N \frac{\mu_{0} I}{2 R} \\ B=\mu_{0} n I \end{gathered}$	$\begin{aligned} & 21.1 \\ & 21.5 \\ & 21.6 \\ & 21.7 \end{aligned}$	
Radius of circular path of particle caused by F	$r=\frac{m v}{\|q\| B}$	21.2	
Relationship between Mass and B	$m=\left(\frac{e r^{2}}{2 V}\right)^{2} B^{2}$		
Force on a current in a magnetic field	$F=I L B \sin \theta$	21.3	
Torque on a currentcarrying coil	$\tau=N I A B \sin \phi$ ϕ is the angle between direction of B and the normal plane	21.4	
Ampere's Law	$\sum B_{\\|} \Delta l=\mu_{0} I$	21.8	

RHR 1: Fingers point along the direction of \vec{B} and the thumb points along the velocity \vec{v} The palm of the hand then faces in the direction of \vec{F} that acts on a positive charge.

RHR 2: Curl the fingers of the right hand into a half-circle. Point the thumb in the direction of the conventional current I, and the tips of the fingers will point in the direction of \vec{B}

Motional emf	$\mathcal{E}=v B L$	22.1
Magnetic Flux	$\Phi=B A \cos \phi$	22.2
Faraday's Law	$\mathcal{E}=-N \frac{\Delta \Phi}{\Delta t}$	22.3
Emf induced ion a rotating planar coil $\omega=2 \pi f$	$\mathcal{E}=N A B \omega \sin (\omega t)=\mathcal{E}_{0} \sin (\omega t)$	22.4
Current	$I=\frac{V-\mathcal{E}}{R}$	22.5
Mutual Inductance	$M=\frac{N_{s} \Phi_{s}}{I_{p}}$	22.6
Emf due to mutual inductance	$\mathcal{E}_{s}=-M \frac{\Delta I_{p}}{\Delta t}$	22.7
Self-Inductance	$L=\frac{N \Phi}{I}$	22.8
Emf due to selfinductance	$\mathcal{E}_{s}=-L \frac{\Delta I}{\Delta t}$	22.9
Energy stored in an inductor	Energy $=\frac{1}{2} L I^{2}$	22.10
Energy Density	Energy Density $=\frac{1}{2 \mu_{0}} B^{2}$	22.11
Voltage and turns of primary and secondary coil	$\frac{V_{s}}{V_{p}}=\frac{N_{s}}{N_{p}}$	22.12
Current and turns of primary and secondary coil	$\frac{I_{s}}{I_{p}}=\frac{N_{p}}{N_{s}}$	22.13
Power	Power=Energy*time	

Chapter 23
Chapter 24

Rms Voltage across a capacitor	$V_{r m s}=I_{r m s} X_{C}$	23.1
Capacitive Reactance	$X_{C}=\frac{1}{2 \pi f C}$	23.2
Rms Voltage across an inductor	$V_{r m s}=I_{r m s} X_{L}$	23.3
Inductive Reactance	$X_{L}=2 \pi f L$	23.4
Rms Voltage for circuit containing resistance capacitance, and inductance	$V_{r m s}=I_{r m s} Z$	23.6
Impedance of a resistor, capacitor and inductor connected in a series	$Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}$	23.7
Tangent of the phase angle	$\bar{P}=I_{r m s} V_{r m s} \cos \phi$	23.8
Average Power	$f_{0}=\frac{1}{2 \pi \sqrt{L C}}$	23.9
Resonant frequency	power factor $=\frac{X_{L}-X_{C}}{Z}$	23.10
Power Factor		

Speed of Light	$c=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$	
Speed of Light in a vacuum	$c=\frac{1}{\sqrt{\varepsilon_{0} \mu_{0}}}$	24.1
Total energy density	$u=\frac{1}{2} \varepsilon_{0} E^{2}+\frac{1}{2 \mu_{0}} B^{2}$ $u=\varepsilon_{0} E^{2}$ $u=\frac{1}{\mu_{0}} B^{2}$	24.2
Relationship between magnitudes Electric and magnetic field waves	$E=c B$	2.43
Rms for Electric Field	$E_{r m s}=\frac{1}{\sqrt{2}} E_{0}$	24.4
Rms for Magnetic Field	$B_{r m s}=\frac{1}{\sqrt{2}} B_{0}$	$24=c U$

Chapter 25

Concave Mirror

Focal length Concave mirror	$f=\frac{1}{2} R$	25.1
Focal length Convex Mirror	$f=-\frac{1}{2} R$	25.2
Mirror Equation	$\frac{1}{d_{o}}+\frac{1}{d_{i}}=\frac{1}{f}$	25.3
Magnification Equation	$m=-\frac{d_{i}}{d_{o}}$ $m=\frac{h_{i}}{h_{o}}$	25.4

Plain Mirror

- Forms an upright virtual image
- Image located same distance behind the mirror as the object in front
- Heights of object and virtual image the same

Information for Spherical mirrors

Focal Length	+	Concave mirror
	-	Convex mirror
Object distance	+	Object in front (real)
	-	Object behind (virtual)
Image Distance	+	Image in front (real)
	-	Image behind (virtual)
Magnification (sign)	+	Image is upright
	-	Image is inverted
Magnification (magnitude)	>1	larger
	<1	smaller

