PHYS 2300 and 2305: General Physics I and II Formulas

Chapter 1

Trig Formulas

$\sin \theta = \frac{\text{Opposite}}{1 + 1}$	$\theta = \sin^{-1} \left(\begin{array}{c} \text{Opposite} \end{array} \right)$	
Hypotenuse	(Hypotenuse)	
$\cos \theta = Adjacent$	$\theta = \cos^{-1} \left(\frac{\text{Adjacent}}{1 + 1} \right)$	
Hypotenuse	$\theta = \cos\left(\frac{1}{\text{Hypotenuse}}\right)$	
$\tan \theta = \frac{\text{Oppostie}}{1}$	$\theta = \tan^{-1}(\frac{\text{Oppostie}}{1})$	
$tan v = \frac{1}{Adjacent}$	$0 = \tan \left(\frac{1}{\text{Adjacent}}\right)$	
$a^2 = b^2 + c^2$		

Vectors

	$\vec{A} + \vec{B} = \vec{C}$		
	Where		
Vector Addition by	$\overrightarrow{C_x} = \overrightarrow{A_x} + \overrightarrow{B_x}$		
Components	$\overrightarrow{C_y} = \overrightarrow{A_y} + \overrightarrow{B_y}$		
	Then to find $ec{C}$ use		
	$c^2 = a^2 + b^2$		

Chapter 2

Velocity

Average Velocity	$\overline{v} = \frac{displacement}{time} = \frac{\Delta \overline{x}}{\Delta t} \text{ or } \overline{v} = \frac{\Delta \overline{d}}{\Delta t}$	2.2
Average Speed	$average\ speed = rac{distance}{time}$	2.1
Instantaneous Velocity	$\nu = \lim_{\Delta t \to 0} \frac{\Delta \overline{x}}{\Delta t}$	2.3

Acceleration

Average Acceleration	$\bar{a} = \frac{\Delta v}{\Delta t}$	2.4
Instantaneous Acceleration	$a = \lim_{\Delta t \to 0} \frac{\Delta \overline{\nu}}{\Delta t}$	2.5

Motion of a particle with constant acceleration

$v = v_0 + at$	2.4
$x = \frac{1}{2}(v_0 + v)t$ or $d = \frac{1}{2}(v_0 + v)t$	2.7
$x = v_0 t + \frac{1}{2}at^2$ Or $d = v_0 t + \frac{1}{2}at^2$	2.8
$v^2 = v_0^2 + 2ax$ or $v^2 = v_0^2 + 2ad$	2.9

Average Velocity/Acceleration			
Average Velocity	$\overline{v} = \frac{\Delta \overline{x}}{\Delta t} \text{ or } \overline{v} = \frac{\Delta \overline{d}}{\Delta t}$	2.2	
Average Acceleration	$\overline{a} = \frac{\Delta v}{\Delta t}$	2.4	

Projectile Motion

X direction	Y direction	
$v_x = v_{0x} + a_x t$	$v_y = v_{0y} + a_y t$	3.3
	$or v_y = v_{0y} + gt$	
$x = \frac{1}{2}(v_{0x} + v_x)t$	$y = \frac{1}{2} \left(v_{0y} + v_y \right) t$	3.4
or $d = \frac{1}{2}(v_{0x} + v_x)t$	or $h = \frac{1}{2} (v_{0y} + v_y) t$	
$x = v_{0x}t + \frac{1}{2}a_{x}t^{2}$	$y = v_{0y}t + \frac{1}{2}a_yt^2$	3.5
or $d = v_{0x}t + \frac{1}{2}a_xt^2$	or $h = v_{0y}t + \frac{1}{2}gt^2$	
$v_x^2 = v_{ox}^2 + 2a_x x$	$v_y^2 = v_{oy}^2 + 2a_y y$	3.6
or $v_x^2 = v_{ox}^2 + 2a_x d$	or $v_y^2 = v_{oy}^2 + 2gh$	

Relative Motion	$\overrightarrow{v_{AC}} = \overrightarrow{v_{AB}} + \overrightarrow{v_{BC}}$ $\overrightarrow{v_{AB}} = -\overrightarrow{v_{BA}}$

Chapter 4

Newton's Second Law			
General	$\Sigma ec{F} = mec{a}$	4.1	
Component form	$\Sigma F_{x} = ma_{x}$ $\Sigma F_{y} = ma_{y}$	4.2	

Gravitational Force

Gravitational Force	$F = G \frac{m_1 m_2}{r^2}$	4.3
Weight	W=mg Where $g = G rac{m_1}{r^2}$	

G=Universal Gravitational Constant = $6.67 x 10^{-11} Nm^2/kg^2$

Friction			
Static Friction (maximum)	$f_s^{max} = \mu_s F_N$	4.7	
Kinetic Frictional	$f_k = \mu_k F_N$	4.8	

 F_N

mg 1

<u>Chapter 6</u>

Speed	$v = \frac{2\pi r}{T}$	5.1	Work done by constant Force	$W = (Fcos\theta)s$ or $W = (Fcos\theta)d$	6.1
Centripetal Acceleration	$a_c = \frac{v^2}{r}$	5.2	Kinetic Energy	$W = (F \cos \theta) d$ $KE = \frac{1}{2}mv^2$	6.2
Centripetal Force	$F_c = \frac{mv^2}{r}$	5.3		$W = KE_f - KE_0$	
Banked Curve	$tan\theta = \frac{v^2}{rg}$	5.4	Work-Energy Theorem	$=\frac{1}{2}mv_{f}^{2}-\frac{1}{2}mv_{0}^{2}$	6.3
Satellites in circular orbits	$v = \sqrt{\frac{GM_E}{r}}$	5.5	Work done by gravity	$= \frac{1}{2}m(v_f - v_0)$ $W_{gravity} = mg(h_0 - h_f)$	6.4
	$T = \frac{2\pi r^{3/2}}{\sqrt{GM_E}}$	5.0	Gravitational Potential Energy	PE = mgh	6.5
NOTE: M_E mass of earth = 5.98x10 ²⁴ kg r_E radius of earth 6.28x10 ⁶ m		Alternative Work-Energy Theorem	$W_{nc} = E_f - E_0$ = $(KE_f + PE_f) - (KE_0 + PE_0)$	6.8	
$G=6.67 \times 10^{-11} \mathrm{N \cdot m^2/kg^2}$			When $W_{nc} = 0$	$E_f = E_0 \text{ or}$ $(KE_f + PE_f) = (KE_0 + PE_0)$	
Vertical Circular Motion	1) $F_c = F_N - mg = \frac{mv^2}{mv^2}$		Power	$P = \frac{W}{t} = \frac{\Delta E}{t} = Fv$	6.10 6.11
$F_{N} \downarrow mg$ 2) F_{c} =	$F_c = F_N = \frac{mv^2}{r}$	E .	Work done by a variable Force	Area under the curve of a $Fcos\theta$ graph	/S. S
$\begin{array}{c c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$		5.20	 Conservative Force Non-conservative f 	s: force of gravity, spring force orces: friction, air resistance	

<u>Chapter 7</u>

Impulse and Momentum		
Impulse	$J = \overline{F} \Delta t$	7.1
Linear Momentum, p	p=mv	7.2
Impulse-Momentum Theorem	$\left(\sum \overline{F}\right)\Delta t = mv_f - mv_0 = m\Delta v$ Or J= Δp	7.4

Collision		
Final Velocity of 2 objects in a head-on collision where one object is initially at rest 1: moving object 2: object at rest	$v_{f1} = \left(\frac{m_1 - m_2}{m_1 + m_2}\right) v_{01}$ $v_{f2} = \left(\frac{2m_1}{m_1 + m_2}\right) v_{01}$	7.8
Conservation of Linear Momentum (in 1D)	$\vec{P}_0 = \vec{P}_f$ $\vec{P}_0 = \vec{P}_f - \vec{P}_0 = 0$	7.7
Elastic Collision	$m_1 v_{01} + m_2 v_{02} = m_1 v_{f1} + m_2 v_{f2}$	7.7b
Inelastic Collision	$m_1 v_{01} + m_2 v_{02} = (m_1 + m_2) v_f$	
Conservation of Linear Momentum (in 2D)	$m_1 v_{01x} + m_2 v_{02x} = m_1 v_{f1x} + m_2 v_{f2x}$ $m_1 v_{01y} + m_2 v_{02y} = m_1 v_{f1y} + m_2 v_{f2y}$	7.9

Center of Mass		
Center of mass location	$x_{cm} = \frac{m_1 x_1 + m_2 x_2}{m_1 + m_2}$	7.10
Center of mass velocity	$v_{cm} = \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2}$	7.11

<u>Chapter 8</u>

Angular displacement	$\Delta \theta = \theta - \theta_0$ $\theta = \frac{s}{r}$	8.1
Average angular velocity	$\overline{\omega} = rac{\Delta heta}{\Delta t}$	8.2
Average angular acceleration	$\overline{lpha} = rac{\Delta \omega}{\Delta t}$	8.4

Motion of a particle with constant acceleration

$\omega = \omega_0 + \alpha t$	8.4
$\theta = \frac{1}{2}(\omega + \omega_0)t$	8.6
$\theta = \omega_0 t + \frac{1}{2} \alpha t^2$	8.7
$\omega^2 = \omega_0^2 + 2\alpha\theta$	8.8

Relationship between angular variables and tangential variables (t subscript)	$v_T = r\omega$ $a_T = r\alpha$	8.9 8.10
When no slipping	$v = v_T = r\omega$ $a = a_T = r\alpha$	8.12 8.13
Centripetal acceleration	$a_c = r\omega^2$	8.11

<u>Chapter 9</u>

Moments of Inertia I for various rigid objects of Mass M

	Torque and Inertia		Thin walled hollow cylinder or	Solid cylinder or disk
Torque $ au$	$ au = F\ell$	9.1	hoop $L = M D^2$	$I = \frac{1}{2}MR^2$
When at Equilibrium	$\sum \tau = 0$	9.2		
Moment of Inertia	$I = \sum mr^2$	9.6	Thin rod, axis perpendicular to	Thin rod, axis perpendicular to rod and
Newton's Second Law for a rigid body rotating about a Fixed axis	$\sum \tau = I\alpha$	9.7	rod and passing though center	passing though end $I = \frac{1}{3}ML^2$
	Work, Energy			
Rotational work	$W_R = au heta$	9.8	$I = \frac{1}{12}ML^2$ Solid Sphere, axis through	Solid Sphere, axis tangent to surface
Rotational Kinetic Energy	$KE_R = \frac{1}{2}I\omega^2$	9.9	center $I = \frac{2}{\pi}MR^2$	$R \downarrow \qquad I = \frac{7}{5}MR^2$
Angular Momentum	$L = I\omega$	9.1	5	
Center of Gravity	$x_{cg} = \frac{W_1 x_1 + W_1 x_1 + \cdots}{W_1 + W_2 + \cdots}$	9.2	Thin Walled spherical shell, axis through center	Thin Rectangular sheet, axis along one edge
See reverse side for mome	ents of Inertia I for various rigid objects of I	Mass M	$I = \frac{2}{3}MR^2$	$I = \frac{1}{3}ML^2$
			Thin Rectangula the	ar sheet, axis parallel to sheet and passing bugh center of the other edge $I = \frac{1}{12}ML^2$

Force Applied	$F_x^{applied} = kx$	10.1
Hooke's Law	$F_x = -kx$	10.2
Frequency cycles per time	$f = \frac{1}{T}$	10.5
Angular frequency	$\omega = 2\pi f = \frac{2\pi}{T}$	10.6
Maximum Velocity Simple Harmonic Motion	$v_{max} = A\omega$	10.8
Maximum Acceleration Simple Harmonic Motion	$a_{max} = A\omega^2$	10.11
Angular frequency of simple harmonic motion	$\omega = \sqrt{k/m}$	10.11
Elastic potential energy	$PE_{elastic} = \frac{1}{2}kx^2$	10.13

Simple Pendulum (10.16)

Angular Frequency $\omega = \sqrt{\frac{g}{L}}$	Time Period $T = 2\pi \int_{-\pi}^{L} \frac{L}{q}$	Length $L = \frac{T^2g}{4\pi^2}$
12	\sqrt{g}	170

Physical pendulum (10.15)

Angular Frequency	Time Period
$\omega = \sqrt{\frac{mgL}{I}}$	$T = 2\pi \sqrt{\frac{I}{mgL}}$

Elastic deformation -stretch and compression (10.17)

Perpendicular to Area (A) Y = constant called Young's modulus

Force	Change in Length
$F = Y\left(\frac{\Delta L}{L_0}\right)A$	$\Delta L = \frac{FL_0}{YA}$

Shear Deformation (change in shape) Parallel to Area (A)

S = constant called the shear modulus

$F = S\left(\frac{\Delta X}{L_0}\right)A \qquad \qquad \Delta X = \frac{FL_0}{SA}$	Force $F = S\left(\frac{\Delta X}{L_0}\right)A$	Change in Length $\Delta X = \frac{FL_0}{SA}$
--	--	--

Pressure (related to Volume deformation)

$P = \frac{F}{A}$	10.19
-------------------	-------

change $\Delta\! P$ in pressure needed to change the volume

B = constant known as the bulk modulus When the volume decreases, ΔV is negative

$$\Delta P = -B\left(\frac{\Delta V}{V_o}\right) \qquad 10.20$$

<u>Chapter 11</u>

	m		
Density	$\rho = \frac{1}{V}$	11.1	Fahrenheit to Celsius
Pressure	$P = \frac{F}{A}$	11.3	Celsius to
Specific Gravity	$= \frac{Density \ of \ substance}{1.000 \times 10^3 \ kg/m^3}$	11.2	Fahrenheit
Pressure and depth in a static Fluid P_1 is higher than P_2	$P_2 = P_1 + \rho g h$	10.4	
Gauge Pressure	ho gh		Linear Thermal
Archimedes' principle	$F_B = W_{fluid}$	11.6	Expansion Volume Thermal
Mass Flow Rate	Mass flow rate = $\rho A v$	11.7	Expansion
Volume flow rate	$Q = Av = \frac{V}{t}$		
Bernoulli's Equation	$P_1 + \frac{1}{2}\rho v_1^2 + \rho g y_1 = P_2 + \frac{1}{2}\rho v_2^2 + \rho g y_2$	11.11	Heat and temperature change
Equation of continuity	$\rho_1 A_1 v_1 = \rho_2 A_2 v_2$	11.8	Heat and phase change
equation of continuity ($\rho_1 = \rho_2$)	$A_1v_1 = A_2v_2$		
Force to move Viscous Layer with constant velocity	$F = \frac{\eta A v}{y}$	11.13	% Relative Humidity
Poiseuille's law	$Q = \frac{\pi R^4 (P_2 - P_1)}{8\eta L}$	11.14	
Force and Area if Pressure same	$F_1/A_1 = F_2/A_2 \text{ or } F_2 = F_1\left(\frac{A_2}{A_1}\right)$		

Temperature Scales			
Fahrenheit to Celsius	$C = \frac{5}{9}(F - 32)$		
Celsius to Fahrenheit	$F = \frac{9}{5}C + 32$		
Celsius to Kelvin	K=C+273.15 or $T = T_c + 273.15$	12.1	

Thermal Expansion				
Linear Thermal Expansion	$\Delta L = \alpha L_o \Delta T$	12.2		
Volume Thermal Expansion	$\Delta V = \beta V_0 \Delta T$	12.3		

Heat and Power				
Heat and temperature change	$\Delta Q = cm\Delta T$	12.4		
Heat and phase change	Q = mL	12.5		

% Polativo Humidity	Partial P _{water vapot}			
	Equilibrum P _{water vapot} @ temp	12.0		

Heat and Power				
Power	P=Q/t			
Heat Conducted	$Q = \frac{(kA\Delta T)t}{L}$	13.1		
Radiant energy e emissivity $\sigma = 5.67 \times 10^{-8} \text{ J/(s*m}^{2} \text{ K}^{4})$ T temp in <i>Kelvins</i> A surface area	$Q = e\sigma T^4 A t$			
<i>Net radiant Power</i> T object Temp in kelvins T _o environment temp in <i>Kelvins</i>	$P_{net} = e\sigma A (T^4 - T_0^4)$	13.3		

Substance	Thermal Conductivity, $k[J/({\rm s}\cdot{\rm m}\cdot{\rm C}{}^{\rm o})]$
Metals	
Aluminum	240
Brass	110
Copper	390
Iron	79
Lead	35
Silver	420
Steel (stainless)	14
Gases	
Air	0.0256
$\operatorname{Hydrogen}(H_2)$	0.180
Nitrogen (N2)	0.0258
Oxygen (○2)	0.0265
Other Materials	
Asbestos	0.090
Body fat	0.20
Concrete	1.1
Diamond	2450
Glass	0.80
Goose down	0.025
Ice (0 °C)	2.2
Styrofoam	0.010
Water	0.60
Wood (oak)	0.15
Wool	0.040

Table 13.1 Thermal Conductivities^a of Selected Materials

a Except as noted, the values pertain to temperatures near 20 ° C.

Molecular Mass, Moles, and Avogadro's Number			Boyle's and Charles' Laws		
Atomic Mass Unit	$1 u = 1.6605 \times 10^{-27} kg$		Boyle's law (when n and T are constant)	$P_i V_i = P_f V_f$	14.3
Avogadro's Number	$N_A = 6.022 \times 10^{23} mo$	l^{-1}	Charles' law (n and P are constant)	$\frac{V_i}{T_i} = \frac{V_f}{T_f}$	14.4
Number of Moles, n N number of particles (atoms or molecules)	$n = \frac{N}{N_A}$			Energy	
Number of Moles, n m sample mass (g) mass per mole: g/mol	$n = \frac{m}{mass \ per \ mole}$		Average Kinetic Energy for a molecule	$\overline{KE} = \frac{1}{2}mv_{rms}^2 = \frac{3}{2}kT$	14.6
Mass of a particle	$m_{particle} = rac{mass \ per \ mole}{N_A}$		Internal Energy	$U = \frac{3}{2}nRT$	14.7
Density	$\rho = \frac{n \cdot mass per m}{V}$	ole		Diffusion	
Ideal Gas La	N		Fick's law of diffusion D Diffusion constant		
Ideal Gas law n number of moles R Universal gas constant =8.31 J/(mol *K) T temp kelvins	PV = nRT	14.1	concentration difference between the ends of the channel (same as density)	$m = \frac{DA\Delta Ct}{L}$	14.8
<i>Ideal Gas Law (alternative form)</i> N number of particles k Boltzmann's constant (1.38x10 ⁻²³ J K ⁻¹)	PV = NkT	14.2			

First Law of Thermodynamics		Heat Engines				
First Law	$\Delta U = U_f - U_f$	$J_0 = Q - W$	15.1	The efficiency e of a heat engine	$e = \frac{Work \ done}{Input \ heat} = \frac{ W }{ Q_u } = 1 - \frac{ Q_c }{ Q_u }$	15 15
Note: ΔU Change in Internal Q (heat) is positive wh	Energy en the system gains heat	and negative when it	loses	Conservation of energy requires	$ Q_H = W + Q_c $	15
heat. W (work) is posi when work is done on	tive when work is done by the system.	y the system and nega	tive		Carnot Engine	
Monatomic Ideal Gas Internal Energy	$U = \frac{3}{2}$	nRT	12.5	For a Carnot engine	$\frac{ Q_C }{ Q_H } = \frac{ T_C }{ T_H }$	14
*R=8.31 J/(mol K)	Applications of First L			Efficiency e for a Carnot engine	$e_{carnot} = 1 - \frac{T_C}{T_H}$	15
Process	Work Done	First Law				
Isobaric	$W = P(V_f - V_i)$	$\Delta U = Q - P(V_f -$	$-V_i$)	Coef	fficient of Performance (COP)	
(constant pressure)	(Eq 15.2)	$(Q = \frac{5}{2}nR\Delta T)$,	COP of a refrigerator or	$COP = \frac{ Q_c }{ W } = \frac{1}{T_{H-1}}$	
Isochoric	W=0 J	$\Delta U = Q - 0J$		an air conditioner	$\frac{1}{T_c} - 1$	
(constant volume)		$(Q = \frac{3}{2}nR\Delta T)$		COP of a heat pump	$COP = \frac{ Q_H }{ Q_H }$	15
Isothermal (constant temp)	$W = nRTln(\frac{V_f}{V_i})$	OJ = Q - nRTln	$\left(\frac{V_f}{V_i}\right)$			
	(Eq. 15.3)	2			Entropy	
Adiabatic (no heat flow)	$W = \frac{3}{2}nR(T_i - T_f)$	$\Delta U = 0J - \frac{3}{2}nR(T_i)$	$-T_f$)	change in entropy ΔS	$\Delta S = \left(\frac{Q}{T}\right)_R$	15
	(15.4)			change in entropy	$\Delta S_{universal} = \Delta S_{system} + \Delta S_{surrow}$	ndings
Adiabatic	1/	1/		$\Delta S_{universal}$	$=\Delta S_{cold} + \Delta S_{Hot}$	
expansion/compression of an ideal gas	$P_0 V_0' =$	$= P_f V_f'$	15.5	Energy unavailable for doing work	$W_{unavailable} = T_0 \Delta S_{universe}$	15
Heat with known number of moles	Q = 0	$Cn\Delta T$	15.6			
molar specific heat	$C_p = C_v = C_v$	$\frac{5}{2}R$ $\frac{3}{2}R$	15.7 15.8			

15.11 15.13

15.12

14.14

15.15

15.17

15.18

15.19

<u>Chapter 16</u>

Waves				
Speed of a Wavelength	$v=f\lambda=rac{\lambda}{T}$	16.1		
Speed of a wave on a string	$v = \sqrt{\frac{F}{m/L}}$	16.2		
description +x direction	$y = Asin(2\pi ft - \frac{2\pi x}{\lambda})$	16.3		
description -x direction	$y = Asin(2\pi ft + \frac{2\pi x}{\lambda})$	16.4		

Doppler Effect				
Source Moving toward stationary observer	$f_o = f_s \left(\frac{1}{1 - \frac{v_s}{v}}\right)$	16.15		
Source Moving away from stationary observer	$f_o = f_s \left(\frac{1}{1 + \frac{v_s}{v}}\right)$	16.15		
Observer moving toward stationary source	$f_o = f_s \left(1 + \frac{v_o}{v} \right)$	16.15		
Observer moving away from stationary source	$f_o = f_s \left(1 - \frac{v_o}{v} \right)$	16.15		

Speed of Sound					
Speed of Sound in a Gas k= 1.38x10 ⁻²³	$v = \sqrt{\frac{\gamma kT}{m}}$	16.5			
Speed of sound in a liquid	$v = \sqrt{\frac{B_{ad}}{\rho}}$	16.6			
Speed of sound in solid bar	$v = \sqrt{\frac{Y}{\rho}}$	16.7			

Sound Intensity					
Intensity	$I = \frac{P}{A}$	16.8			
Intensity -uniform in all directions	$I = \frac{P}{4\pi r^2}$	16.9			
Intensity level in decibels I0 =1x10-12W/m2	$\beta = (10dB) \log\left(\frac{l}{l_o}\right)$	16.10			

Constructive and Destructive Interference					
Constructive	onstructive Difference in path lengths is zero or an integer				
2 waves in Phase	(0,1,2,3)				
Destructive	Differend	e in path lengths is a half- integer			
2 waves in Phase	(0.5,1.5,2	2.5,)			
Constructive	Differend	e in path lengths is a half- integer			
2 waves out of Phase	(0.5,1.5,2	2.5,)			
Destructive	Differend	e in path lengths is zero or an integ	ger		
2 waves out of Phase	(0,1,2,3	.)			
	D	iffraction			
Single Slit –first minimu	n	$sin heta = rac{\lambda}{D}$	17.1		
Circular Opening –first n	ninimum	$sin heta = 1.22 \frac{\lambda}{D}$	17.2		
beats		$f_{beat} = f_1 - f_2$	17.46		
	Stan	ding Waves			
Transverse					
Natural frequency		$f_n = n\left(\frac{1}{2L}\right)$ for n=1,2,	17.3		
Fixed at both ends					
Longitudinal		$f = u \begin{pmatrix} v \\ v \end{pmatrix}$ for $r = 1.2$	47.4		
Natural frequency		$J_n = n\left(\frac{1}{2L}\right)$ for n=1,2,	17.4		
Longituding					
Natural frequency	f	$n = n \left(\frac{v}{v}\right)$ for n=1.3.5	17.5		
open at one end		$n = n \binom{4L}{4L}$ (4L) (61 (1-1,3,3,)	17.5		

Formulas					
Number of	$\# = \frac{q}{q}$				
electrons/protons	е				
Coulombs law:					
F=force	$k q_1 q_2 $	18 1			
Where one exerts on	$r = \frac{r^2}{r^2}$	10.1			
two					
Electric Field	$\vec{E} = \frac{\vec{F}}{q_0}$	18.2			
Magnitude of Electric Field	$E = \frac{k q }{r^2}$	18.3			
Magnitude of Electric Field for a parallel plate capacitor	$E = \frac{q}{\epsilon_0 A} = \frac{\sigma}{\epsilon_0}$	18.4			
Electric Flux	$\Phi_E = \sum (E \cos \phi) \Delta A = \frac{Q}{\epsilon_0}$	18.6,7			

Important Numbers				
$k = 8.99 \times 10^9 N \cdot m^2 / C^2$				
Permittivity of free space $\epsilon_0 = 8.85 \times 10^{-12} \ \frac{C^2}{N \cdot m^2}$				
Magnitude of charge on electron (-e) or proton (+e) $e = 1.6 imes 10^{-19}$ C (a lot of time q_0)				
Mass of Electron $9.11 \times 10^{-31} kg$				
Mass of Proton $1.673 \times 10^{-27} kg$				
Mass of Neutron $1.675 \times 10^{-27} kg$				

<u>Chapter 19</u>

Work and Electric Potential Energy	$W_{AB} = EPE_A - EPE_B$	19.1	Current (if electric current is constant)	$I = \frac{\Delta q}{\Delta t}$	20.1
Electric Potential	$V = \frac{EPE}{q_0} = \frac{kq}{r}$	19.3,6	Ohms Law	$V = IR \text{ or } R = \frac{V}{I} \text{ or } I = \frac{V}{R}$	20.2
Electric Potential Difference Charge moves from A	$V_A - V_B = \frac{EPE_B}{a_B} - \frac{EPE_A}{a_B} = \frac{-W_{AB}}{a_B}$	19.4	Resistance with length L, cross-sectional area A	$R = \rho \frac{L}{A}$	20.3
to B	40 40 40		Resistance and Resistivity (T temp)	$\rho = \rho_0 [1 + \alpha (T - T_0)]$ $R = R_0 [1 + \alpha (T - T_0)]$	20.4,5
Difference Charge moves from B	$V_B - V_A = \frac{W_{AB}}{q_0}$		Electric Power	$P = IV, P = I^2R, P = \frac{V^2}{R}$	20.6
	$E = \frac{1}{2}mv^{2} + \frac{1}{2}I\omega^{2} + mgh + \frac{1}{2}kx^{2}$		AC Circuits	$V = V_0 \sin(2\pi f t)$ $I = I_0 \sin(2\pi f t)$	20.7,8
	2 2 2 2 + EPE		RMS Formulas with	$I_{rms} = \frac{I_0}{\sqrt{2}}$	20.12
Electric field	$E = -\frac{\Delta V}{\Delta s}$	19.7a	Current and Voltage	$V_{rms} = \frac{V_0^2}{\sqrt{2}}$	20.12
Charge on each plate of a capacitor	q = CV			$\overline{P} = I_{rms}V_{rms}$ $\overline{P} = I_{rms}^2R$	
Dielectric constant (E's are electric fields	E_o		Average Power	$\bar{P} = \frac{V_{rms}^2}{R}$	20.15
without and with a dielectric)	$\kappa = \frac{1}{E}$		Series	$R_{s} = R_{1} + R_{2} + R_{3} + \cdots$ $\frac{1}{2} - \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \cdots$	20.16
Capacitance of a parallel plate capacitor	$C = \frac{\kappa \epsilon_0 A}{d}$			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20.13
Electric Potential Energy Stored in a	$Energy = \frac{1}{2}qV = \frac{1}{2}CV^2 = \frac{q^2}{2z}$	19.11	(V is the same)	$\frac{\overline{R_s}}{R_s} = \frac{\overline{R_1}}{R_1} + \frac{\overline{R_2}}{R_2} + \frac{\overline{R_3}}{R_3} + \cdots$ $C_p = C_1 + C_2 + C_3 + \cdots$	20.17
capacitor				$q=q_0[1-e^{rac{-t}{RC}}]$ (charging)	20.20
Energy Density	Energy Density = $\frac{Energy}{Volume} = \frac{1}{2}\kappa\epsilon_0 E^2$	19.12	RC circuits	au = RC $q = q_0 e^{rac{-t}{RC}}$ (discharging)	20.21 20.22

Chapter 22

Magnitude of magnetic Field $\mu_0 = 4\pi \times 10^{-7} T \cdot m/A$	$B = \frac{F}{ q_0 v \sin \theta}$ $B = \frac{\mu_0 I}{2\pi r}$ $B = N \frac{\mu_0 I}{2R}$ $B = \mu_0 n I$	21.1 21.5 21.6 21.7
Radius of circular path of particle caused by F	$r = \frac{mv}{ q B}$	21.2
Relationship between Mass and B	$m = \left(\frac{er^2}{2V}\right)^2 B^2$	
Force on a current in a magnetic field	$F = ILBsin\theta$	21.3
Torque on a current- carrying coil	$ au = NIABsin\phi$ ϕ is the angle between direction of B and the normal plane	21.4
Ampere's Law	$\sum B_{ } \Delta l = \mu_0 I$	21.8

RHR 1: Fingers point along the direction of \vec{B} and the thumb points along the velocity \vec{v} The palm of the hand then faces in the direction of \vec{F} that acts on a positive charge.

<u>**RHR 2**</u>: Curl the fingers of the right hand into a half-circle. Point the thumb in the direction of the conventional current I, and the tips of the fingers will point in the direction of \vec{B}

Motional emf	$\mathcal{E} = vBL$	22.1
Magnetic Flux	$\Phi = BAcos\phi$	22.2
Faraday's Law	$\mathcal{E} = -N \frac{\Delta \Phi}{\Delta t}$	22.3
Emf induced ion a rotating planar coil $\omega = 2\pi f$	$\mathcal{E} = NAB\omega\sin(\omega t) = \mathcal{E}_0\sin(\omega t)$	22.4
Current	$I = \frac{V - \mathcal{E}}{R}$	22.5
Mutual Inductance	$M = \frac{N_s \Phi_s}{I_p}$	22.6
Emf due to mutual inductance	$\mathcal{E}_s = -M \frac{\Delta I_p}{\Delta t}$	22.7
Self-Inductance	$L = \frac{N\Phi}{I}$	22.8
Emf due to self- inductance	$\mathcal{E}_s = -L \frac{\Delta I}{\Delta t}$	22.9
Energy stored in an inductor	$Energy = \frac{1}{2}LI^2$	22.10
Energy Density	Energy Density $=$ $\frac{1}{2\mu_0}B^2$	22.11
Voltage and turns of primary and secondary coil	$\frac{V_s}{V_p} = \frac{N_s}{N_p}$	22.12
Current and turns of primary and secondary coil	$\frac{I_s}{I_p} = \frac{N_p}{N_s}$	22.13
Power	Power=Energy*time	

Rms Voltage across a capacitor	$V_{rms} = I_{rms} X_c$	23.1	Speed of Light	$c = 3.00 \times 10^8 m/s$	
Capacitive Reactance	$X_C = \frac{1}{2\pi fC}$	23.2	Speed of Light in a vacuum	$c = \frac{1}{\sqrt{\varepsilon_0 \mu_0}}$	24.1
Rms Voltage across an inductor	$V_{rms} = I_{rms} X_L$	23.3		$u = \frac{1}{2}\varepsilon_0 E^2 + \frac{1}{2\mu_0}B^2$	
Inductive Reactance	$X_L = 2\pi f L$	23.4	Total energy density	$u = \varepsilon_0 E^2$ $u = \frac{1}{\mu} B^2$	24.2
Rms Voltage for circuit containing resistance, capacitance, and inductance	$V_{rms} = I_{rms}Z$	23.6	Relationship between magnitudes Electric and magnetic field	E = cB	2.43
Impedance of a resistor, capacitor and inductor connected in a series	$Z = \sqrt{R^2 + (X_L - X_C)^2}$	23.7	Rms for Electric Field	$E_{rms} = \frac{1}{\sqrt{2}}E_0$	
Tangent of the phase angle	$tan\phi = \frac{X_L - X_C}{R}$	23.8	Rms for Magnetic Field	$B_{rms} = \frac{1}{\sqrt{2}}B_0$	
Average Power	$\bar{P} = I_{rms} V_{rms} cos\phi$	23.9	Intensity	S = cU	24.4
Resonant frequency	$f_0 = \frac{1}{2\pi\sqrt{LC}}$	23.10	Doppler Effect in vacuum + come together	$f_o = f_s(1 \pm \frac{v_{rel}}{c})$	24.6
Power Factor	$power \ factor = \frac{R}{Z}$		- move apart Marlus' Law	$\bar{S} = \bar{S}_0 cos^2 \theta$	24.7

Concave Mirror

Focal length Concave mirror	$f = \frac{1}{2}R$	25.1
Focal length Convex Mirror	$f = -\frac{1}{2}R$	25.2
Mirror Equation	$\frac{1}{d_o} + \frac{1}{d_i} = \frac{1}{f}$	25.3
Magnification Equation	$m = -\frac{d_i}{d_o}$ $m = \frac{h_i}{h_o}$	25.4

Plain Mirror

- Forms an upright virtual image
- Image located same distance behind the mirror as the object in front
- Heights of object and virtual image the same

Information for Spherical mirrors

Focal Longth	+	Concave mirror
FOCALLENGUI	-	Convex mirror
Object distance	+	Object in front (real)
Object distance	-	Object behind (virtual)
Imaga Distance	+	Image in front (real)
Image Distance	-	Image behind (virtual)
Magnification (sign)	+	Image is upright
widghincation (Sign)	-	Image is inverted
Magnification	>1	larger
(magnitude) <		smaller