Finding the Mean and Standard Deviation by hand

Mean $=\bar{x}=\frac{\sum x_{i}}{n}$
Variance $=\frac{\sum x_{i}^{2}-\frac{\left(\Sigma x_{i}\right)^{2}}{n}}{n-1}=s^{2}$ or σ^{2} (Sample or population)
Standard Deviation $=\sqrt{\frac{\sum x_{i}^{2}-\frac{\left(\sum x_{i}\right)^{2}}{n}}{n-1}}=\sqrt{\text { Variance }}=s$ or σ (Sample or population)

Example: The heights in inches of 6 members of a family are below. Find the mean, variance, and the standard deviation of the heights:

Heights (in inches) - 70, 46, 57, 66, 68, 53

Mean $=\frac{70+46+57+66+68+53}{6}=60$
$\sum x_{i}^{2}=\left(70^{2}+46^{2}+57^{2}+66^{2}+68^{2}+53^{2}\right)=22054$
$\left(\sum x_{i}\right)^{2}=(70+46+57+66+68+53)^{2}=129600$
Variance $=\frac{22054-\frac{129600}{6}}{5}=90.8$
Standard Deviation $=\sqrt{90.8}=9.53$

Chebyshev's Inequality

The percent of observations within k standard deviations of the mean is represented by the expression $\left(1-\frac{1}{k^{2}}\right) \cdot 100 \%$
Empirical Rule
68\%-95\%-99.7\% -> Percent of observations we predict that will be between one, two, and three standard deviations from the mean

$$
\begin{gathered}
\frac{68 \%}{2}=34 \% \\
\frac{95 \%-68 \%}{2}=13.5 \% \\
\frac{99.7 \%-95 \%}{2}=2.35 \% \\
\frac{100 \%-99.7 \%}{2}=0.15 \%
\end{gathered}
$$

Using Frequency to calculate the mean and standard deviation

* x_{i} is the midpoint of each level, and f_{i} is the frequency of each level

Mean $=\bar{x}=\frac{\sum x_{i} f_{i}}{n}$
Variance $=\frac{\sum x_{i}^{2} f_{i}-\frac{\left(\sum x_{i} f_{i}\right)^{2}}{n}}{\sum f_{i}-1}$
Standard Deviation $=\sqrt{\frac{\sum x_{i}^{2} f_{i}-\frac{\left(\sum x_{i} f_{i}\right)^{2}}{n}}{\sum f_{i}-1}}=\sqrt{\text { Variance }}$

The table below shows the ages of 1000 golfers who played golf this week at the local golf course. Use the table to find the mean, variance, and standard deviation of the golfers who played this past week:

Age	Frequency
$0-9$	15
$10-19$	75
$20-29$	107
$30-39$	165
$40-49$	255
$50-59$	243
$60-69$	127
$70-79$	13

To be able to solve this, we expand the table for our calculations:

Age	Midpoint, $\mathbf{x}_{\mathbf{i}}$	Frequency, $\mathbf{f}_{\mathbf{i}}$	$\mathbf{x}_{\mathbf{i}} \mathbf{f}_{\mathbf{i}}$	$\mathbf{x}_{\mathbf{i}}{ }^{\mathbf{2}}$	$\mathbf{x}_{\mathbf{i}} \mathbf{2}_{\mathbf{i}}$
$0-9$	5	15	75	25	375
$10-19$	15	75	1125	225	16875
$20-29$	25	107	2675	625	66875
$30-39$	35	165	5775	1225	202125
$40-49$	45	255	11475	2025	516375
$50-59$	55	243	13365	3025	735075
$60-69$	65	127	8255	4225	536575
$70-79$	75	13	975	5625	73125

$\sum f_{i}=1000, \sum x_{i} f_{i}=43720, \sum x_{i}^{2} f_{i}=2147400$
Mean $=\frac{43720}{1000}=43.72$
Variance $=\frac{2147400-\frac{43720^{2}}{1000}}{1000-1}=236.198$
Standard Deviation $=\sqrt{236.198}=15.37$

