Rationalizing Denominators

Square roots:

• Multiply the numerator and denominator by the denominator. Then simplify.

Examples

Simplify the following expression: $\frac{6}{\sqrt{7}}$

$$\frac{6}{\sqrt{7}} = \frac{6}{\sqrt{7}} \cdot \frac{\sqrt{7}}{\sqrt{7}}$$
 *Multiply both numerator and denominator by $\sqrt{7}$
$$= \frac{6\sqrt{7}}{7}$$

Because we cannot simplify any further, $\frac{6\sqrt{7}}{7}$ is our final answer.

Simplify the following expression: $\frac{10}{\sqrt{5}}$

$$\frac{10}{\sqrt{5}} = \frac{10}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}}$$
*Multiply both numerator and denominator by $\sqrt{5}$

$$= \frac{10\sqrt{5}}{5}$$
*We see that we can simplify this fraction further by dividing the numerator and denominator each by 5
$$= 2\sqrt{5}$$

Because we cannot simplify any further, $2\sqrt{5}$ is our final answer.

Simplify the following expression: $\frac{\sqrt{6}}{\sqrt{15}}$

$$\frac{\sqrt{6}}{\sqrt{15}} = \frac{\sqrt{6}}{\sqrt{15}} \cdot \frac{\sqrt{15}}{\sqrt{15}}$$
*Multiply both numerator and denominator by $\sqrt{15}$

$$= \frac{\sqrt{90}}{15}$$
*Now we check to see whether $\sqrt{90}$ can be simplified, which we can do
$$= \frac{\sqrt{9}\sqrt{10}}{15}$$
*Split up $\sqrt{90}$ as $\sqrt{9}$ and $\sqrt{10}$ to help us simplify

$$=\frac{3\sqrt{10}}{15}$$

*Simplify $\sqrt{9}$

$$=\frac{\sqrt{10}}{5}$$

*Simplify the whole numbers (the 3 and 15) by dividing both the numerator and denominator by 3

Because we cannot simplify any further, $\frac{\sqrt{10}}{5}$ is our final answer.

Simplify the following expression: $\frac{x^2}{\sqrt{2x}}$

$$\frac{x^2}{\sqrt{2x}} = \frac{x^2}{\sqrt{2x}} \cdot \frac{\sqrt{2x}}{\sqrt{2x}}$$

 $\frac{x^2}{\sqrt{2x}} = \frac{x^2}{\sqrt{2x}} \cdot \frac{\sqrt{2x}}{\sqrt{2x}}$ * Multiply both numerator and denominator by $\sqrt{2x}$

$$=\frac{x^2\sqrt{2x}}{2x}$$

* Now we check to see whether anything can be simplified. In this problem, we can take an x out of the numerator and the denominator

$$=\frac{x\sqrt{2x}}{2}$$

Because we cannot simplify any further, $\frac{x\sqrt{2x}}{2}$ is our final answer.

Cube roots:

Multiply the numerator and denominator by a factor that will create a perfect cube in the denominator. Then simplify.

Examples

Simplify the expression: $\frac{4}{\sqrt[3]{6}}$

$$\frac{4}{\sqrt[3]{6}} = \frac{4}{\sqrt[3]{6}} \cdot \frac{\sqrt[3]{6^2}}{\sqrt[3]{6^2}}$$

*Because we have one cube root of 6 in the denominator, we multiply by 2 more cube root of 6's (or $\sqrt[3]{6^2}$) to create a perfect cube in the denominator.

$$=\frac{4\sqrt[3]{36}}{6}$$
 *Under the cube root, we now have $6^2=36$, and we look to see if there is more we can simplify

$$=\frac{2\sqrt[3]{36}}{3}$$
 *Divide both the numerator and denominator by 2 so that we can simplify as much as possible

Because we cannot simplify any further, $\frac{2\sqrt[3]{36}}{3}$ is our final answer.

Simplify the expression: $\frac{7}{\sqrt[3]{x^2}}$

$$\frac{7}{\sqrt[3]{x^2}} = \frac{7}{\sqrt[3]{x^2}} \cdot \frac{\sqrt[3]{x}}{\sqrt[3]{x}}$$
 *Because we have an x^2 in our denominator, we need one more x to make it a perfect cube. Thusly, we multiply by $\sqrt[3]{x}$ on both the numerator and the denominator.

$$=\frac{7\sqrt[3]{x}}{x}$$
 *We look to see if we can simplify further. In this case, we cannot.

Because we cannot simplify any further, $\frac{7\sqrt[3]{x}}{x}$ is our final answer.

Simplify the expression: $\frac{\sqrt[3]{21y}}{\sqrt[3]{3xy^2}}$

$$\frac{\sqrt[3]{21y}}{\sqrt[3]{3xy^2}} = \frac{\sqrt[3]{21y}}{\sqrt[3]{3xy^2}} \cdot \frac{\sqrt[3]{9x^2y}}{\sqrt[3]{9x^2y}}$$
*In our denominator, we have one 3, one x, and two y's. Thusly, we need two 3's (or $\sqrt[3]{3}$, which is 9), two x's (or $\sqrt[3]{2}$), and one y so that they all become perfect cubes. This means we will multiply the numerator and denominator each by $\sqrt[3]{9x^2y}$

*Now we look to see if we are able to simplify any further. We want to specifically check if
$$\sqrt[3]{189}$$
 can be broken down further by taking out a perfect cube, which in this case it can be, using $\sqrt[3]{27}$ and $\sqrt[3]{7}$

$$= \frac{\sqrt[3]{27}\sqrt[3]{7x^2y}}{3xy}$$
*Split up $\sqrt[3]{189}$ as $\sqrt[3]{27}$ and $\sqrt[3]{7}$

$$= \frac{\sqrt[3]{7x^2y}}{3xy}$$
*Simplify $\sqrt[3]{27}$

$$= \frac{\sqrt[3]{7x^2y}}{xy}$$
*Cancel out the 3's in both the numerator and denominator

Because we cannot simplify any further, $\frac{\sqrt[3]{7x^2y}}{xy}$ is our final answer.

Denominators with two terms

Multiply the numerator and denominator by the conjugate of the denominator.
 Make sure to distribute or FOIL the numerator and denominator. Then simplify.

Examples

Simplify the expression: $\frac{5}{3-\sqrt{2}}$

$$\frac{5}{3-\sqrt{2}} = \frac{5}{3-\sqrt{2}} \cdot \frac{3+\sqrt{2}}{3+\sqrt{2}}$$
 *Multiply by the conjugate
$$= \frac{15+5\sqrt{2}}{9+3\sqrt{2}-3\sqrt{2}-2}$$
 *FOIL the denominator, and distribute the numerator
$$= \frac{15+5\sqrt{2}}{7}$$
 *Simplify the denominator

Because we cannot simplify any further, $\frac{15+5\sqrt{2}}{7}$ is our final answer.

Simplify the expression: $\frac{6+\sqrt{10}}{5+\sqrt{6}}$

$$\frac{6+\sqrt{10}}{5+\sqrt{6}} = \frac{6+\sqrt{10}}{5+\sqrt{6}} \cdot \frac{5-\sqrt{6}}{5-\sqrt{6}}$$
 *Multiply by the conjugate

$$=\frac{30-6\sqrt{6}+5\sqrt{10}-\sqrt{60}}{25-5\sqrt{6}+5\sqrt{6}-6}$$

*FOIL in both the numerator and denominator

$$=\frac{30-6\sqrt{6}+5\sqrt{10}-2\sqrt{15}}{19}$$

*Simplify in both the numerator and the denominator. $\sqrt{60} = 2\sqrt{15}$ in the numerator, and the $\sqrt{6}$ terms cancel out in the

denominator.

Because we cannot simplify any further, $\frac{30-6\sqrt{6}+5\sqrt{10}-2\sqrt{15}}{19}$ is our final answer.

Simplify the expression: $\frac{1+\sqrt{3}}{1-\sqrt{3}}$

$$\frac{1+\sqrt{3}}{1-\sqrt{3}} = \frac{1+\sqrt{3}}{1-\sqrt{3}} \cdot \frac{1+\sqrt{3}}{1+\sqrt{3}}$$

*Multiply by the conjugate

$$=\frac{1+\sqrt{3}+\sqrt{3}+3}{1+\sqrt{3}-\sqrt{3}-3}$$

*FOIL in both the numerator and the denominator

$$=\frac{4+2\sqrt{3}}{-2}$$

*Combine like terms

$$= -2 - \sqrt{3}$$

*Simplify further by dividing out a common factor. In this case, we divide by -2, so that we no longer have a denominator (or in other words, our denominator is 1)

Because we cannot simplify any further, $-2 - \sqrt{3}$ is our final answer.