Rationalizing Denominators

Square roots:

- Multiply the numerator and denominator by the denominator. Then simplify.

Examples

Simplify the following expression: $\frac{6}{\sqrt{7}}$

$$
\begin{aligned}
\frac{6}{\sqrt{7}} & =\frac{6}{\sqrt{7}} \cdot \frac{\sqrt{7}}{\sqrt{7}} \quad \quad \text { Multiply both numerator and denominator by } \sqrt{7} \\
& =\frac{6 \sqrt{7}}{7}
\end{aligned}
$$

Because we cannot simplify any further, $\frac{6 \sqrt{7}}{7}$ is our final answer.

Simplify the following expression: $\frac{10}{\sqrt{5}}$

$$
\begin{aligned}
\frac{10}{\sqrt{5}} & =\frac{10}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} & & \text { *Multiply both numerator and denominator by } \sqrt{5} \\
& =\frac{10 \sqrt{5}}{5} & & \text { *We see that we can simplify this fraction further by dividing the } \\
& & & \text { numerator and denominator each by } 5
\end{aligned}
$$

Because we cannot simplify any further, $2 \sqrt{5}$ is our final answer.

Simplify the following expression: $\frac{\sqrt{6}}{\sqrt{15}}$

$$
\begin{aligned}
\frac{\sqrt{6}}{\sqrt{15}} & =\frac{\sqrt{6}}{\sqrt{15}} \cdot \frac{\sqrt{15}}{\sqrt{15}} & & * \text { Multiply both numerator and denominator by } \sqrt{15} \\
& =\frac{\sqrt{90}}{15} & & * \text { Now we check to see whether } \sqrt{90} \text { can be simplified, which we can do } \\
& =\frac{\sqrt{9} \sqrt{10}}{15} & & * \text { Split up } \sqrt{90} \text { as } \sqrt{9} \text { and } \sqrt{10} \text { to help us simplify }
\end{aligned}
$$

$$
\begin{array}{ll}
=\frac{3 \sqrt{10}}{15} & \text { *Simplify } \sqrt{9} \\
=\frac{\sqrt{10}}{5} & \text { *Simplify the whole numbers (the } 3 \text { and 15) by dividing both the } \\
& \text { numerator and denominator by } 3
\end{array}
$$

Because we cannot simplify any further, $\frac{\sqrt{10}}{5}$ is our final answer.

Simplify the following expression: $\frac{x^{2}}{\sqrt{2 x}}$

$$
\begin{aligned}
\frac{x^{2}}{\sqrt{2 x}} & =\frac{x^{2}}{\sqrt{2 x}} \cdot \frac{\sqrt{2 x}}{\sqrt{2 x}} & & * \text { Multiply both numerator and denominator by } \sqrt{2 x} \\
& =\frac{x^{2} \sqrt{2 x}}{2 x} & & \text { * Now we check to see whether anything can be simplified. In this } \\
& & & \text { problem, we can take an } \mathrm{x} \text { out of the numerator and the denominator }
\end{aligned}
$$

Because we cannot simplify any further, $\frac{x \sqrt{2 x}}{2}$ is our final answer.

Cube roots:

- Multiply the numerator and denominator by a factor that will create a perfect cube in the denominator. Then simplify.

Examples

Simplify the expression: $\frac{4}{\sqrt[3]{6}}$

$$
\frac{4}{\sqrt[3]{6}}=\frac{4}{\sqrt[3]{6}} \cdot \frac{\sqrt[3]{6^{2}}}{\sqrt[3]{6^{2}}}
$$

*Because we have one cube root of 6 in the denominator, we multiply by 2 more cube root of $6^{\prime} s\left(\right.$ or $\sqrt[3]{6^{2}}$) to create a perfect cube in the denominator.

$$
\begin{array}{ll}
=\frac{4 \sqrt[3]{36}}{6} & \text { *Under the cube root, we now have } 6^{2}=36, \text { and we look to see if there } \\
\text { is more we can simplify } \\
=\frac{2 \sqrt[3]{36}}{3} & \begin{array}{l}
\text { *Divide both the numerator and denominator by } 2 \text { so that we can } \\
\text { simplify as much as possible }
\end{array}
\end{array}
$$

Because we cannot simplify any further, $\frac{2 \sqrt[3]{36}}{3}$ is our final answer.

Simplify the expression: $\frac{7}{\sqrt[3]{x^{2}}}$
$\frac{7}{\sqrt[3]{x^{2}}}=\frac{7}{\sqrt[3]{x^{2}}} \cdot \frac{\sqrt[3]{x}}{\sqrt[3]{x}}$
*Because we have an x^{2} in our denominator, we need one more x to make it a perfect cube. Thusly, we multiply by $\sqrt[3]{x}$ on both the numerator and the denominator.
$=\frac{7 \sqrt[3]{x}}{x} \quad$ *We look to see if we can simplify further. In this case, we cannot.

Because we cannot simplify any further, $\frac{7 \sqrt[3]{x}}{x}$ is our final answer.

Simplify the expression: $\frac{\sqrt[3]{21 y}}{\sqrt[3]{3 x y^{2}}}$

$$
\begin{aligned}
& \frac{\sqrt[3]{21 y}}{\sqrt[3]{3 x y^{2}}}=\frac{\sqrt[3]{21 y}}{\sqrt[3]{3 x y^{2}}} \cdot \frac{\sqrt[3]{9 x^{2} y}}{\sqrt[3]{9 x^{2} y}} \quad \text { *In our denominator, we have one 3, one } x \text {, and two } y^{\prime} \text { s. Thusly, } \\
& \text { we need two } 3 \text { 's (or } 3^{2} \text {, which is } 9 \text {), two } x^{\prime} \text { (or } x^{2} \text {), and one } y \\
& \text { so that they all become perfect cubes. This means we will multiply } \\
& \text { the numerator and denominator each by } \sqrt[3]{9 x^{2} y} \\
& =\frac{\sqrt[3]{189 x^{2} y}}{3 x y} \\
& \text { *Now we look to see if we are able to simplify any further. We } \\
& \text { want to specifically check if } \sqrt[3]{189} \text { can be broken down further by } \\
& \text { taking out a perfect cube, which in this case it can be, using } \sqrt[3]{27} \\
& \text { and } \sqrt[3]{7}
\end{aligned}
$$

$$
\begin{array}{ll}
=\frac{\sqrt[3]{27} \sqrt[3]{7 x^{2} y}}{3 x y} & * \text { Split up } \sqrt[3]{189} \text { as } \sqrt[3]{27} \text { and } \sqrt[3]{7} \\
=\frac{3_{3} \sqrt[3 x^{2} y]{3 x y}}{} & { }^{*} \text { Simplify } \sqrt[3]{27} \\
=\frac{\sqrt[3]{7 x^{2} y}}{x y} & { }^{*} \text { Cancel out the 3's in both the numerator and denominator }
\end{array}
$$

Because we cannot simplify any further, $\frac{\sqrt[3]{7 x^{2} y}}{x y}$ is our final answer.

Denominators with two terms

- Multiply the numerator and denominator by the conjugate of the denominator. Make sure to distribute or FOIL the numerator and denominator. Then simplify.

Examples

Simplify the expression: $\frac{5}{3-\sqrt{2}}$
$\begin{array}{ll}\frac{5}{3-\sqrt{2}}=\frac{5}{3-\sqrt{2}} \cdot \frac{3+\sqrt{2}}{3+\sqrt{2}} & \text { *Multiply by the conjugate } \\ =\frac{15+5 \sqrt{2}}{9+3 \sqrt{2}-3 \sqrt{2}-2} & \text { *FOIL the denominator, and distribute the numerator } \\ =\frac{15+5 \sqrt{2}}{7} & \text { *Simplify the denominator }\end{array}$

Because we cannot simplify any further, $\frac{15+5 \sqrt{2}}{7}$ is our final answer.

Simplify the expression: $\frac{6+\sqrt{10}}{5+\sqrt{6}}$
$\frac{6+\sqrt{10}}{5+\sqrt{6}}=\frac{6+\sqrt{10}}{5+\sqrt{6}} \cdot \frac{5-\sqrt{6}}{5-\sqrt{6}} \quad$ *Multiply by the conjugate

$$
\begin{array}{ll}
=\frac{30-6 \sqrt{6}+5 \sqrt{10}-\sqrt{60}}{25-5 \sqrt{6}+5 \sqrt{6}-6} & \text { *FOIL in both the numerator and denominator } \\
=\frac{30-6 \sqrt{6}+5 \sqrt{10}-2 \sqrt{15}}{19} \quad & \text { *Simplify in both the numerator and the denominator. } \sqrt{60}= \\
& 2 \sqrt{15} \text { in the numerator, and the } \sqrt{6} \text { terms cancel out in the } \\
& \text { denominator. }
\end{array}
$$

Because we cannot simplify any further, $\frac{30-6 \sqrt{6}+5 \sqrt{10}-2 \sqrt{15}}{19}$ is our final answer.

Simplify the expression: $\frac{1+\sqrt{3}}{1-\sqrt{3}}$
$\frac{1+\sqrt{3}}{1-\sqrt{3}}=\frac{1+\sqrt{3}}{1-\sqrt{3}} \cdot \frac{1+\sqrt{3}}{1+\sqrt{3}}$
$=\frac{1+\sqrt{3}+\sqrt{3}+3}{1+\sqrt{3}-\sqrt{3}-3}$
$=\frac{4+2 \sqrt{3}}{-2}$
$=-2-\sqrt{3}$
*Multiply by the conjugate
*FOIL in both the numerator and the denominator
*Combine like terms
*Simplify further by dividing out a common factor. In this case, we divide by -2 , so that we no longer have a denominator (or in other words, our denominator is 1)

Because we cannot simplify any further, $-2-\sqrt{3}$ is our final answer.

